SANDIA REPORT

SAND2017-11428 Unlimited Release Printed October 2017


Next Generation Qualification: Kinemetrics STS-5A Seismometer Evaluation

B. John Merchant George W. Slad

Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401 Facsimile: (865) 576-5728 E-Mail: reports@osti.gov

Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce National Technical Information Service 5301 Shawnee Rd Alexandria, VA 22312

Telephone: (800) 553-6847 Facsimile: (703) 605-6900 E-Mail: orders@ntis.gov

Online order: http://www.ntis.gov/search

SAND2017-11428 Unlimited Release Printed October 2017

Next Generation Qualification: Kinemetrics STS-5A Seismometer Evaluation

B. John Merchant George W. Slad

Ground-Based Monitoring R&E
Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185-MS0404

Abstract

Sandia National Laboratories has tested and evaluated two seismometers, the STS-5A, manufactured by Kinemetrics. These seismometers measure three axes of broadband ground velocity using a UVW configuration with feedback control in a mechanically levelled borehole package. The purpose of the seismometer evaluation was to determine a measured sensitivity, response, self-noise, dynamic range, and self-calibration ability. The Kinemetrics STS-5A seismometers are being evaluated for the U.S. Air Force as part of their Next Generation Qualification effort.

ACKNOWLEDGMENTS

The equipment was purchased and setup using funds provided by the United States Department of Defense. The evaluation and generation of the report was funded by the United States Department of Energy Office of Nuclear Verification (NA-221).

CONTENTS

Acknow	wledgments	4
Conten	ts	5
Figures	·	6
Tables.		7
	clature	
	oduction	
	t Plan	
2.1	Test Facility	
2.2	Scope	
2.3	Timeline	
2.4	Evaluation Frequencies	18
3 Tes	t Evaluation	19
3.1	Sensitivity	19
3.2	Self-Noise	
3.3	Dynamic Range	38
3.4	Frequency Response Verification	
3.5	Passband	
3.6	Calibrator Sensitivity	59
3.7	Calibrator Frequency Response Verification	
4 Sun	nmary	66
Referen	nces	67
Append	lix A: Response Models	68
	nemetrics STS-2 #120651 SNL Reference Response	
	emetrics STS-5A Response	
Append	lix B: Calibration Sheets	70
	ilent 3458A # MY45048371	
	emetrics STS-5A #130877	
Kin	emetrics STS-5A #130880	79

FIGURES

Figure 1 Kinemetrics STS-5A (Kinemetrics STS-5A datasheet)	10
Figure 2 FACT Site Bunker	12
Figure 3 Picture of installed seismometers, before insulation	13
Figure 3 Picture of installed seismometers, overhead	13
Figure 3 Picture of installed Seismometers	14
Figure 4 Diagram of installed Seismometers	14
Figure 4 GPS Re-broadcaster	15
Figure 6 Laboratory Power Supply	16
Figure 7 Quanterra Q330HR Digitizer	16
Figure 6 Sensitivity Configuration Diagram	19
Figure 7 Sensitivity Earthquake Location	20
Figure 8 Sensitivity Time Series	21
Figure 9 Sensitivity Power Spectra	22
Figure 10 Sensitivity Coherence	22
Figure 11 Sensitivity Amplitude Response	22
Figure 12 Sensitivity Corrected Amplitude Response	23
Figure 13 Self-Noise Configuration Diagram	24
Figure 14 Z Axis Self Noise	26
Figure 15 N Axis Self Noise	26
Figure 16 E Axis Self Noise	26
Figure 17 Self Noise Time Series	29
Figure 18 Self Noise Raw Power Spectra	30
Figure 19 Self Noise Coherence	30
Figure 20 Self Noise	30
Figure 21 Self Noise Time Series	32
Figure 22 Self Noise Raw Power Spectra	33
Figure 23 Self Noise Coherence	33
Figure 24 Self Noise	33
Figure 25 Self Noise Time Series	35
Figure 26 Self Noise Raw Power Spectra	36
Figure 27 Self Noise Coherence	36
Figure 28 Self Noise	36
Figure 29 Frequency Response Configuration Diagram	40
Figure 30 Amplitude Response - #130877	42
Figure 31 Phase Response - #130877	42
Figure 33 Amplitude Response - #130880	44
Figure 33 Phase Response - #130880	44
Figure 34 Sensitivity Earthquake Location	46
Figure 35 Low Frequency Response Time Series	47
Figure 36 Low Frequency Response Power Spectra	
Figure 37 Low Frequency Response Coherence	48
Figure 38 Low Frequency Amplitude Response	
Figure 39 Low Frequency Phase Response	
Figure 40 Sensitivity Earthquake Location	

Figure 41 Mid Frequency Response Time Series	50
Figure 42 Mid Frequency Response Power Spectra	51
Figure 43 Mid Frequency Response Coherence	51
Figure 44 Mid Frequency Amplitude Response	51
Figure 45 Mid Frequency Phase Response	52
Figure 46 High Frequency Earthquake Location	52
Figure 47 High Frequency Response Time Series	53
Figure 48 High Frequency Response Power Spectra	54
Figure 49 High Frequency Response Coherence	54
Figure 50 High Frequency Amplitude Response.	54
Figure 51 High Frequency Phase Response	55
Figure 52 Passband Configuration Diagram	56
Figure 53 Passband Z Low Frequency	57
Figure 54 Passband N Low Frequency	58
Figure 55 Passband E Low Frequency	58
Figure 62 Calibrator Sensitivity Configuration Diagram	59
Figure 63 Calibrator Sensitivity Time Series - #130877	
Figure 64 Calibrator Sensitivity Time Series - #130880	
Figure 46 Calibrator Frequency Response Configuration Diagram	
Figure 47 Calibrator Frequency Response Time Series	
Figure 48 Calibrator Frequency Response Power Spectra	
Figure 49 Calibrator Frequency Response Coherence	
Figure 50 Calibrator Frequency Response Amplitude Response	
Figure 51 Calibrator Frequency Response Phase Response	65
TABLES	
Table 1 Seismometer Specifications (Kinemetrics STS-5A datasheet)	
Table 2 Reference STS-2 #120651 Sensitivity	
Table 3 Testbed Digitizer Channel Assignment and Bitweights	
Table 4 Tests performed	
Table 5 Sensitivity Testbed Equipment	
Table 6 Sensor Sensitivity	
Table 7 Self-NoiseTestbed Equipment	
Table 8 Self Noise RMS - Z	
Table 9 Self Noise RMS - N	
Table 10 Self Noise RMS - E	
Table 11 Self Noise	
Table 12 Dynamic Range - Z	
Table 14 Dynamic Range - N	
Table 14 Dynamic Range - E	
Table 15 Frequency Response Testbed Equipment	
Table 16 Frequency Response Earthquakes	
Table 17 Frequency Response - #130877	
Table 18 Frequency Response - #130880	45

Table 19 Passband Testbed Equipment	56
Table 20 Passband	
Table 21 Calibrator Sensitivity Testbed Equipment	59
Table 22 Calibrator Sensitivity	
Table 23 Calibrator Frequency Response Testbed Equipment	
Table 24 Calibrator Frequency Response	

NOMENCLATURE

BB Broadband dB Decibel

DOE Department of Energy
DWR Digital Waveform Recorder

HNM High Noise Model
LNM Low Noise Model
PSD Power Spectral Density

PSL Primary Standards Laboratory SNL Sandia National Laboratories

SP Short-period

1 INTRODUCTION

The evaluation of the two Kinemetrics STS-5A seismometers, serial numbers 130877 and 130880, was performed to determine the performance characteristics of the instruments including sensitivity, self-noise, dynamic range, frequency response, and passband. In addition, a third STS-5A with serial number 139759, was borrowed from PASSCAL to assist in the measurement of self-noise.

Figure 1 Kinemetrics STS-5A (Kinemetrics STS-5A datasheet)

The STS-5A seismometer measures 3-axes of ground motion across a customizable passband, in this case $0.00833~{\rm Hz}~(120~{\rm seconds})-50~{\rm Hz}$, and a sensitivity of $1500~{\rm V/(m/s})$. The seismometer is contained within a borehole package and typically installed with a hole-lock. For the purpose of this evaluation, the seismometers were installed in a vault configuration alongside a reference sensor.

SPEC	CIFICATIONS		
Generator constant:	2x750 vs/m ±1%	Seismic signals output:	max. $\pm 20V$ differential, 220Ω serial resistance per line
Response:	Flat to ground velocity from 8.33mHz (120s) to 50Hz; a 360s version called STS-5A-360 is also available	Boom position output: Humidity:	max. ±10V single-ended, 1kΩ serial resistance 0-100% RH
Clip level:	≤20Hz: ±13 mm/s ground velocity	Calibration input:	max.±10VDC
	>20Hz: linearly derating from ±13 mm/s to ±5.3 mm/s ground velocity	Control inputs:	330VDC, 0.5mA, galvanically isolated
Normalized to frequency:	20.50Hz 0.34g / 10Hz 0.17 / 1Hz 0.017g / 0.1Hz 0.0017g / 0.03Hz 0.00055g	Communication:	RS485, galvanically isolated
Case tilt range limit:	+/-5° in any direction where a centering is successful	Enclosure rating:	Exceeds IP69
Operating temperature:	-20°C to 70°C (guaranteed), -40°C to 70°C (functional)	Various:	RoHS and CE Compliant
Humidity:	0-100% RH	Size:	Diameter 5.75" (146 mm) . Length 18.5" (470 mm
Power supply voltage:	1030VDC, galvanically isolated		
Power consumption:	Average: 0.45W	Weight:	20kg

Table 1 Seismometer Specifications (Kinemetrics STS-5A datasheet)

2 TEST PLAN

2.1 Test Facility

Testing of the seismometers was performed at Sandia National Laboratories' Facility for Acceptance, Calibration and Testing (FACT) located near Albuquerque, New Mexico, USA. The FACT site is at approximately 1830 meters in elevation.

Sandia National Laboratories (SNL), Ground-based Monitoring R&E Department has the capability of evaluating the performance of preamplifiers, digitizing waveform recorders and analog-to-digital converters/high-resolution digitizers for geophysical applications.

Tests are based on the Institute of Electrical and Electronics Engineers (IEEE) Standard 1057 for Digitizing Waveform Recorders and Standard 1241 for Analog to Digital Converters. The analyses based on these standards were performed in the frequency domain or time domain as required. When appropriate, instrumentation calibration was traceable to the National Institute for Standards Technology (NIST).

Testing was performed within the FACT sites underground bunker due to the bunker's stable temperature.

Figure 2 FACT Site Bunker

The seismometers were configured on the FACT Seismometer Pier within the underground bunker. They were covered in cardboard tubes which were filled with cellulose insulation in order to improve thermal stability. The seismometers were operated alongside a reference STS-2 seismometer from April – August, 2017.

The SNL reference seismometer, a Kinemetrics STS-2 #120651, is used to compare against the seismometers under test. All results are made relative to this reference.

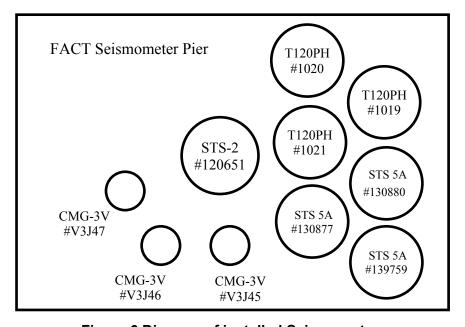

Figure 3 Picture of installed seismometers, before insulation

Figure 4 Picture of installed seismometers, overhead

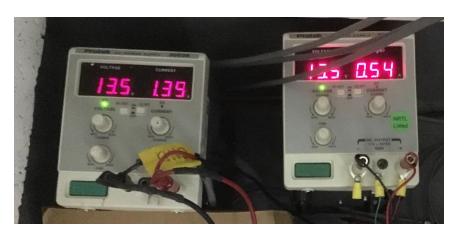
Figure 5 Picture of installed Seismometers

Figure 6 Diagram of installed Seismometers

Prior to performing the seismometer testing for the Next Generation Qualification project, SNL's reference STS-2 was taken to the USGS Albuquerque Seismic Laboratory (ASL) for recalibration using their step-table, a Lennartz CT-E1 step calibration table. The resulting sensitivities for the reference STS-2 #120651 are shown below:

Table 2 Reference STS-2 #120651 Sensitivity

Axis	Sensitivity at 1 Hz
Z	1495.51 V/(m/s)
N	1488.72 V/(m/s)
Е	1,492.25 V/(m/s)


The temperature was monitored continuously throughout the testing. The temperature was maintained to be at least 23 Celsius with active heating by a radiant electric heater during the spring and early summer. During the summer months, the temperature increased due to ambient conditions and was stable at 27.3 Celsius.

A GPS re-broadcaster operates within the bunker to provide the necessary timing source for the SMAD digitizers and other recording equipment present.

Figure 7 GPS Re-broadcaster

The digitizers and seismometers were powered off of a laboratory power supply providing approximately 13.5 Volts.

Figure 8 Laboratory Power Supply

The Kinemetrics STS-5A seismometers were connected to a Quanterra Q330HR digitizer for recording of the time series data. The seismometer and digitizer channel assignments are contained in the table below.

Figure 9 Quanterra Q330HR Digitizer

Before setting up the seismometer for testing, the digitizer bit-weights were calibrated against a reference meter with an active calibration from Sandia's PSL. The SNL reference digitizer, Kinemetrics Q330 #1551, was calibrated using the Agilent 3458A meter # MY45048371. The remaining digitizer bit-weights were obtained from the Next Generation Qualification digitizer evaluation reports. The bit-weights and digitizer channel assignments used are shown in the table below.

Table 3 Testbed Digitizer Channel Assignment and Bitweights

					aa =	
Manufacturer	Digitizer	Port	Seismometer	Channel Z	Channel N	Channel E
Kinemetrics	Q330 #1551	В	STS-2 #120651	2.38368 uV/count	2.38473 uV/count	2.38406 uV/count
Kinemetrics	Q330 #6164	В	STS-5A #139759	0.11872 uV/count	0.11881 uV/count	0.11873 uV/count
Kinemetrics	Q330 #6162	A	STS-5A #130877	29.72408	29.73126	29.73929
				nV/count	nV/count	nV/count
Kinemetrics	Q330 #6162	В	STS-5A #1030880	0.11879 uV/count	0.11876 uV/count	0.11877 uV/count
Guralp	Affinity #559A	Α	CMG-3V #V3J45	0.99943 uV/count	N/A	N/A
Guralp	Affinity #55A1	Α	CMG-3V #V3J46	0.99949 uV/count	N/A	N/A
Guralp	Affinity #559B	Α	CMG-3V #V3J47	0.99936 uV/count	N/A	N/A
Nanometrics	Centaur #1776	A	T120PH #1020	0.12499 uV/count	0.12498 uV/count	0.12498 uV/count
Nanometrics	Centaur #1787	Α	T120PH #1021	0.12495 uV/count	0.12499 uV/count	0.12494 uV/count
Nanometrics	Centaur #1797	A	T120PH #1019	0.12498 uV/count	0.125 uV/count	0.12498 uV/count

2.2 Scope

The following table lists the tests and resulting evaluations that were performed.

Table 4 Tests performed

1 4.010 1 10010 00110111100				
Test				
Sensitivity				
Self-Noise				
Dynamic Range				
Frequency Response				
Passband				
Calibrator Sensitivity				
Calibrator Frequency Response				

2.3 Timeline

Testing of the seismometers was performed at Sandia National Laboratories between April 1 – August 31, 2017.

2.4 Evaluation Frequencies

The frequency range of the measurements is from 0.001 Hz to 80 Hz. Specifically, the frequencies from the function below which generates standardized octave-band values in Hz (ANSI S1.6-1984) with F_0 = 1 Hz:

$$F(n) = F_0 \times 10^{(n/10)}$$

For measurements taken using either broadband or tonal signals, the following frequency values shall be used for n = -30, -29, ..., 16, 17. The nominal center frequency values, in Hz, are:

0.001,	0.00125,	0.0016,	0.0020,	0.0025,	0.00315,	0.0040,	0.0050,	0.0063,	0.008,
0.01,	0.0125,	0.016,	0.020,	0.025,	0.0315,	0.040,	0.050,	0.063,	0.08,
0.10,	0.125,	0.16,	0.20,	0.25,	0.315,	0.40,	0.50,	0.63,	0.8,
1.0,	1.25,	1.6,	2.0,	2.5,	3.15,	4.0,	5.0,	6.3,	8.0,
10.0,	12.5,	16.0,	20.0,	25.0,	31.5,	40.0,	50.0,	63.0,	80.0

3 TEST EVALUATION

3.1 Sensitivity

The sensitivity of a sensor is defined to be the "quotient of the change in an indication of a measuring system and the corresponding change in a value of a quantity being measured" (JCGM 200:2012). For a seismometer measuring velocity, the sensitivity value is expressed at a given frequency in units of V/(m/s), depending upon whether the sensor is measuring pressure or pressure rate.

This sensitivity value is to be measured at a 1 Hz calibration frequency, temperature, static pressure, and input pressure quantity that shall be specified.

3.1.1 Measurand

The quantity being measured is the sensor's sensitivity at 1 Hz in V/(m/s).

3.1.2 Configuration

The sensor under test and a reference sensor with known response characteristics are co-located so that they are both measuring a common earth motion.

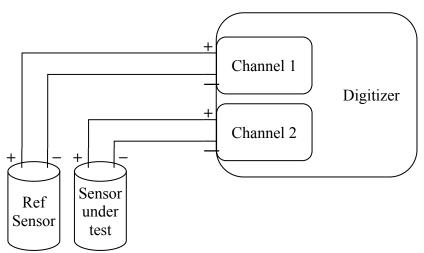


Figure 10 Sensitivity Configuration Diagram

The sensors are allowed to stabilize and then are operated until suitable ground-motion from an earthquake is recorded to provide high coherence between the sensors at the calibration frequency of 1 Hz.

Table 5 Sensitivity Testbed Equipment

rabio o conciently recepca Equipment								
	Manufacturer / Model	Serial Number	Nominal					
			Configuration					
Reference Sensor	Kinemetrics STS-2	# 120651	1500 V/(m/s)					
Reference Digitizer	Kinemetrics Q330	# 1551	200 Hz, 40 Vpp					
Sensor under test	Kinemetrics STS-5A	# 130877, 130880, 139759	1500 V/(m/s)					
Sensor Digitizers	Kinemetrics Q330	# 6162, #6164	200 Hz, 40 Vpp					

The digitizer records the output of the reference sensor and the sensor under test simultaneously. The reference sensor recording is used for comparison against the sensor under test recording.

3.1.3 Analysis

The data recorded using the reference sensor and digitizer has the calibrated bit-weight and sensitivity applied to convert the data to ground motion.

The data recorded using the sensor under test and digitizer has just the calibrated bit-weight applied to convert the data to voltage.

The relative transfer function, both amplitude and phase, is computed between the two channels (Merchant, 2011) from the power spectral density:

 $H[k], \ 0 \le k \le N - 1$

The amplitude response at 1 Hz is evaluated to compute the sensitivity of the sensor under test.

3.1.4 Result

The earthquake that was identified for use in determining sensitivity was a combination of two earthquakes that occurred in western Montana on July 6, 2017 as reported by the USGS. The first earthquake was a magnitude 5.8 located at 46.881 N, 112.575 W, a depth of 12.2 km, and at 06:30:17 (UTC). The second earthquake, approximately 5 minutes later, was a magnitude 5.0 located at 46.482 N, 112.658 W, a depth of 15.7 km, and at 06:35:35 (UTC).

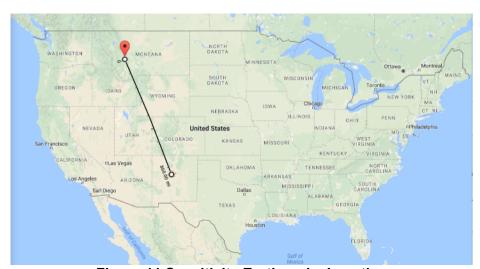


Figure 11 Sensitivity Earthquake Location

These earthquakes were approximately 860 (1384 km) miles from the Sandia FACT site and resulted in an observable waveform signal that lasted over 1 hour in duration.

The figure below shows the waveform time series for the vertical axis only. The horizontal N and E axes are very similar. The window regions bounded by the red lines indicate the segment of data used for analysis.

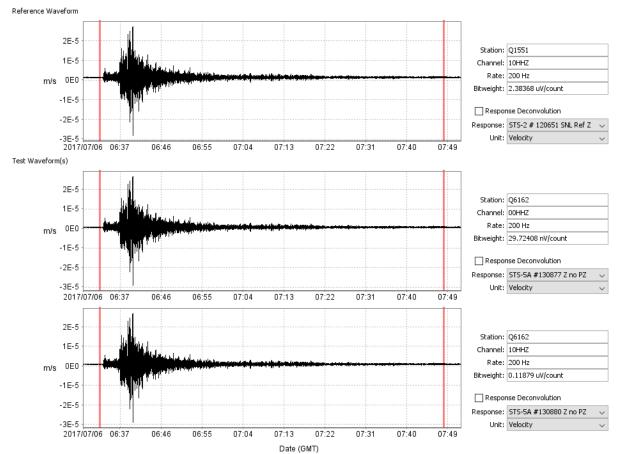


Figure 12 Sensitivity Time Series

The figures below show the power spectra, coherence, and amplitude response that were computed from the waveform time series for the vertical axis only. Again, the horizontal N and E axes are very similar.

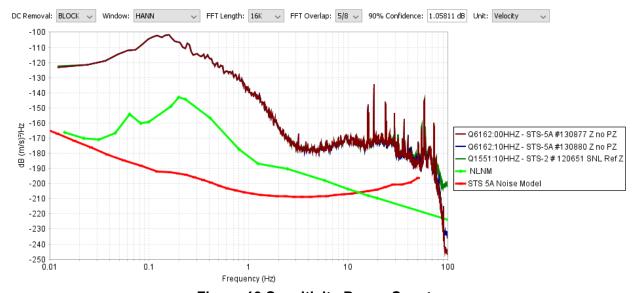
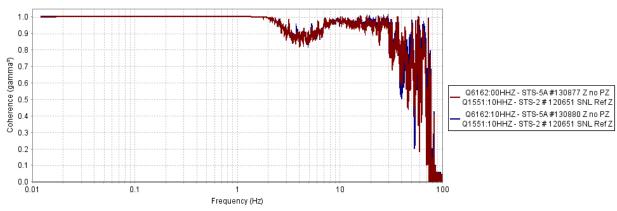



Figure 13 Sensitivity Power Spectra

Figure 14 Sensitivity Coherence

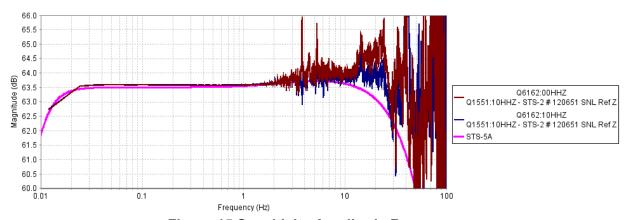


Figure 15 Sensitivity Amplitude Response

Note that the amplitude response curves shown above are consistent with the nominal amplitude response model for a Kinemetrics STS-5A, shown in purple, with a sensitivity of 1500 V/(m/s)

and applied poles and zeros. However, there is a slight shift in each of the amplitude responses, indicating that each seismometer has a unique sensitivity.

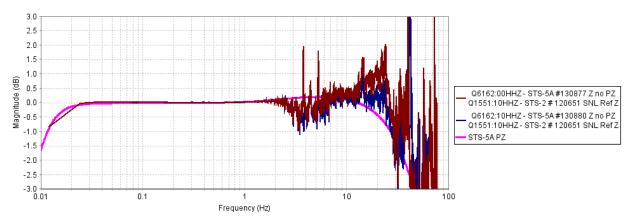

The measured sensitivity results, relative to the calibrated reference STS-2 seismometer, are shown in the table below:

Table 6 Sensor Sensitivity

		Z		N		Е	
Seismometer	Nominal	Sensitivity	%	Sensitivity	%	Sensitivity	%
STS5A #130877	1500 V/(m/s)	1508 V/(m/s)	0.53%	1505 V/(m/s)	0.33%	1506 V/(m/s)	0.40%
STS5A #130880	1500 V/(m/s)	1510 V/(m/s)	0.67%	1507 V/(m/s)	0.47%	1508 V/(m/s)	0.53%

The measured sensitivities were between 1505 and 1510 V/(m/s). These values differ from the nominal 1500 V/(m/s) by between 0.33 and 0.67 %. The specification from Kinemetrics state that they trim the seismometers to match the sensitivity to within \pm of nominal. These measured sensitivities are consistent with that specification.

Applying the measured sensitivities to the waveform data results in the amplitude response plot shown below:

Figure 16 Sensitivity Corrected Amplitude Response

The amplitude response curves are now corrected for the measured sensitivities and show greater agreement with the nominal Kinemetrics STS-5A response model.

3.2 Self-Noise

The Self-Noise test measures the amount of noise present on a seismometer by collecting waveform data simultaneously from multiple seismometers during a long duration quiet time period. Data is collected from multiple sensors so that coherence analysis may be applied to remove any coherent signal, leaving only incoherence signal, which should approximate the self-noise of the seismometer.

3.2.1 Measurand

The quantity being measured is the digitizer input channels self-noise power spectral density in dB relative to 1 (m/s)²/Hz versus frequency and the total noise in m/s RMS over an application pass-band.

3.2.2 Configuration

The sensors under test are co-located so that they are both measuring a common earth motion.

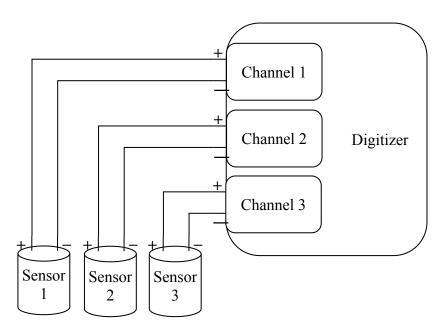


Figure 17 Self-Noise Configuration Diagram

The sensors are allowed to stabilize and then are operated until a suitably quiet long-duration period is observed, typically over-night or over a weekend.

Table 7 Self-NoiseTestbed Equipment

	Manufacturer / Model	Serial Number	Nominal
			Configuration
Sensor under test	Kinemetrics STS-5A	# 130877, 130880, 139759	1500 V/(m/s)
Sensor Digitizers	Kinemetrics Q330	# 6162, #6164	200 Hz, 40 Vpp

The digitizer records the output of the reference sensors.

3.2.3 Analysis

The data recorded using the sensor under test and digitizer has just the calibrated bit-weight, sensitivity, and poles and zeros applied to convert the data to ground motion.

$$x[n]$$
, $0 \le n \le N - 1$

The PSD is computed from the time series (Merchant, 2011) from the time series using a 32k-sample Hann window. The window length and data duration were chosen such that there were several points below the lower limit of the evaluation pass-band of 0.01 Hz and the 90% confidence interval of approximately 0.5 dB. The resulting 90% confidence interval was determined to be 0.56 dB.

$$P_{rr}[k], 0 \le k \le N-1$$

Over frequencies (in Hertz):

$$f[k]$$
, $0 \le k \le N - 1$

Coherence analysis using the auto and cross power spectra is applied to determine the individual sensor self-noise levels. In the case of two co-located sensors, a 2-channel coherence method (Holcomb, 1989) is used. In the case of three co-located sensors, a 3-channel coherence method (Sleeman, 2007) is used:

$$P_{nn}[k], 0 \le k \le N-1$$

In addition, the total RMS noise over the application pass-band is computed:

$$rms = \sqrt{\frac{1}{T_s L} \sum_{k=n}^{m} |Pnn[k]|}$$

where f[n] and f[m] are the pass – band limits

3.2.4 Result

A review of the data recorded collected determined that the quietest time period while all three sensors were operating occurred on April 13, 2017 between approximately 04:00 and 12:00 UTC. In local time, this corresponds to an overnight during a weekend between Wednesday, April 12 20:00 and Thursday, April 13, 04:00.

The following series of plots and tables contain a summary of the self-noise levels for all three seismometer axes. A composite set of plots are show side-by-side with different PSD window lengths: a longer window length of 256k for low frequencies (< 0.1 Hz) and a shorter window length of 16k for high frequencies (> 0.1 Hz). The subsequent sections contain more detailed information on each of the axes.

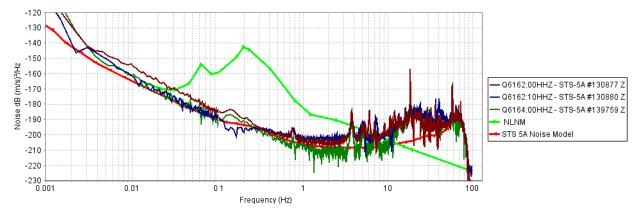


Figure 18 Z Axis Self Noise

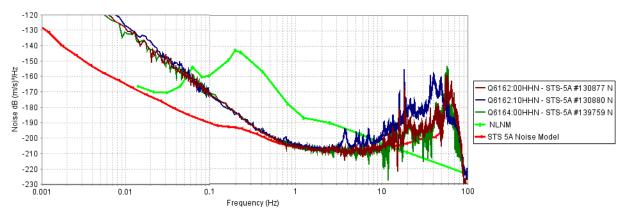


Figure 19 N Axis Self Noise

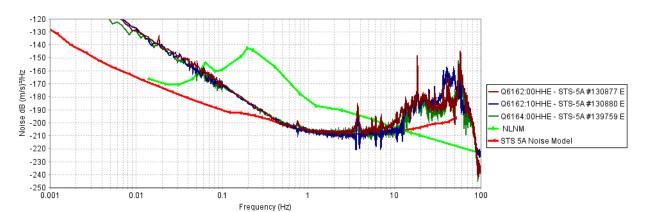


Figure 20 E Axis Self Noise

Note that the apparent change in noise variance at 0.1 Hz in the above plots is due to the different PSD window lengths that were used to process each segment. The spectral estimates of noise on the horizontal channels are higher than on the vertical channel at lower frequencies (< 0.5 Hz). It is unknown what the cause of this is, however it could be due to the increased difficulty of aligning seismometer horizontally which reduces signal coherence. At high frequencies (> 10 Hz), some amount of nearby site noise is coupling into the noise estimate, likely due to the seismometers not being perfectly co-located and the pier not being homogeneous.

Overall, the self-noise estimates of the seismometers are consistent with the nominal noise model provided by the manufacturer.

Table 8 Self Noise RMS - Z

	8.3 mHz - 50 Hz 20 mHz - 1 Hz		20 mHz - 16 Hz	0.5 Hz - 16 Hz	
STS5A #130877	3.666 nm/s rms	0.589 nm/s rms	0.842 nm/s rms	0.604 nm/s rms	
STS5A #130880	3.719 nm/s rms	0.315 nm/s rms	0.654 nm/s rms	0.577 nm/s rms	
STS5A #139759	3.035 nm/s rms	0.323 nm/s rms	0.504 nm/s rms	0.389 nm/s rms	

Table 9 Self Noise RMS - N

	8.3 mHz - 50 Hz	20 mHz - 1 Hz	20 mHz - 16 Hz	0.5 Hz - 16 Hz	
STS5A #130877	28.221 nm/s rms	6.484 nm/s rms	6.488 nm/s rms	0.247 nm/s rms	
STS5A #130880	43.147 nm/s rms	8.777 nm/s rms	8.793 nm/s rms	0.536 nm/s rms	
STS5A #139759	23.874 nm/s rms	6.360 nm/s rms	6.368 nm/s rms	0.307 nm/s rms	

Table 10 Self Noise RMS - E

	8.3 mHz - 50 Hz	20 mHz - 1 Hz	20 mHz - 16 Hz	0.5 Hz - 16 Hz
STS5A #130877	28.569 nm/s rms	6.814 nm/s rms	6.856 nm/s rms	0.751 nm/s rms
STS5A #130880	35.561 nm/s rms	6.313 nm/s rms	6.336 nm/s rms	0.544 nm/s rms
STS5A #139759	22.002 nm/s rms	6.013 nm/s rms	6.027 nm/s rms	0.413 nm/s rms

The following table contains the seismometer self-noise values, smoothed with a median filter, expressed as dB relative to 1 (m/s)²/Hz. At frequencies below 0.1 Hz, the spectral uncertainty is 1.6 dB. At frequencies above 0.1 Hz, the spectral uncertainty is 0.4 dB.

Table 11 Self Noise

Z N E									
Frequency	#130877	#130880	#139759	#130877	#130880	#139759	#130877	#130880	#139759
0.001 Hz	-109.9 dB	-114.3 dB	-105.3 dB	-90.2 dB	-84.7 dB	-89.6 dB	-92.0 dB	-91.1 dB	-92.6 dB
0.001112 0.00125 Hz	-109.9 dB	-114.3 dB -125.7 dB	-105.5 dB	-90.2 dB	-84.7 dB	-89.6 dB	-92.0 dB	-91.1 dB	-92.6 dB
0.00123 Hz	-120.2 dB	-123.7 dB -134.0 dB	-110.5 dB	-90.2 dB	-91.6 dB	-94.2 dB	-96.6 dB	-91.1 dB	-92.0 dB
0.0010 Hz	-134.3 dB	-134.0 dB	-127.5 dB -134.6 dB	-99.3 dB	-91.0 dB	-94.2 dB -96.5 dB	-96.4 dB	-95.3 dB	-99.0 dB
0.002 Hz						-96.5 dB			
	-137.4 dB -142.6 dB	-140.7 dB -145.2 dB	-139.1 dB -145.3 dB	-106.8 dB	-102.7 dB		-105.9 dB	-107.4 dB	-106.7 dB -108.1 dB
0.00315 Hz				-109.3 dB	-104.8 dB	-109.5 dB	-109.2 dB	-108.0 dB	
0.004 Hz	-146.3 dB -146.2 dB	-147.6 dB	-150.1 dB -146.5 dB	-112.4 dB -119.0 dB	-106.8 dB -115.1 dB	-111.9 dB -122.4 dB	-112.8 dB	-112.4 dB	-115.3 dB
0.005 Hz		-150.3 dB -154.3 dB	-146.5 dB -156.1 dB				-117.6 dB	-118.1 dB	-120.3 dB
0.0063 Hz	-150.2 dB -153.1 dB	-154.3 dB -158.0 dB		-121.5 dB -125.2 dB	-117.6 dB	-123.1 dB	-119.8 dB	-119.4 dB -123.3 dB	-125.0 dB -128.2 dB
0.008 Hz		-158.0 dB -160.4 dB	-157.4 dB		-121.1 dB -126.9 dB	-125.8 dB -131.4 dB	-124.9 dB		
0.010 Hz	-153.1 dB		-160.7 dB	-129.3 dB			-128.3 dB	-127.9 dB	-129.8 dB
0.0125 Hz	-159.9 dB	-166.6 dB	-163.4 dB	-133.8 dB	-131.7 dB	-134.9 dB	-132.9 dB	-133.9 dB	-133.9 dB
0.016 Hz	-161.7 dB	-169.4 dB	-166.5 dB	-137.4 dB	-134.8 dB	-137.2 dB	-138.1 dB	-139.8 dB	-139.1 dB
0.020 Hz	-164.6 dB	-171.4 dB	-171.6 dB	-142.0 dB	-137.4 dB	-142.0 dB	-143.4 dB	-141.3 dB	-141.2 dB
0.025 Hz	-167.7 dB	-170.6 dB	-177.4 dB	-147.7 dB	-144.6 dB	-147.4 dB	-145.4 dB	-147.8 dB	-145.0 dB
0.0315 Hz	-169.7 dB	-174.2 dB	-178.3 dB	-149.0 dB	-148.3 dB	-150.6 dB	-149.6 dB	-148.7 dB	-151.4 dB
0.040 Hz	-173.3 dB	-179.8 dB	-179.4 dB	-155.4 dB	-152.4 dB	-155.1 dB	-152.6 dB	-156.7 dB	-155.1 dB
0.050 Hz	-175.9 dB	-183.7 dB	-182.2 dB	-158.4 dB	-156.0 dB	-158.1 dB	-156.7 dB	-159.9 dB	-159.7 dB
0.063 Hz	-180.3 dB	-182.1 dB	-185.2 dB	-163.5 dB	-161.5 dB	-161.8 dB	-160.8 dB	-163.2 dB	-164.2 dB
0.080 Hz	-184.4 dB	-187.9 dB	-187.4 dB	-166.9 dB	-167.9 dB	-166.7 dB	-166.2 dB	-168.1 dB	-168.2 dB
0.100 Hz	-184.7 dB	-188.3 dB	-191.1 dB	-171.4 dB	-171.4 dB	-170.8 dB	-170.1 dB	-171.2 dB	-171.7 dB
0.125 Hz	-183.7 dB	-190.8 dB	-186.6 dB	-175.9 dB	-176.5 dB	-174.9 dB	-175.0 dB	-175.9 dB	-175.2 dB
0.160 Hz	-186.8 dB	-193.0 dB	-189.8 dB	-179.9 dB	-180.8 dB	-179.5 dB	-180.1 dB	-181.1 dB	-179.9 dB
0.200 Hz	-190.4 dB	-196.8 dB	-192.5 dB	-184.3 dB	-184.2 dB	-183.9 dB	-184.5 dB	-184.3 dB	-184.9 dB
0.250 Hz	-192.7 dB	-198.2 dB	-195.4 dB	-189.1 dB	-187.9 dB	-188.4 dB	-188.4 dB	-188.4 dB	-189.7 dB
0.315 Hz	-197.5 dB	-198.0 dB	-198.4 dB	-192.9 dB	-192.1 dB	-192.6 dB	-192.2 dB	-192.4 dB	-193.5 dB
0.400 Hz	-198.6 dB	-196.4 dB	-202.8 dB	-197.0 dB	-195.7 dB	-196.3 dB	-197.1 dB	-197.3 dB	-197.0 dB
0.500 Hz	-200.5 dB	-202.1 dB	-206.4 dB	-199.6 dB	-198.9 dB	-199.1 dB	-201.1 dB	-200.7 dB	-200.0 dB
0.630 Hz	-202.9 dB	-201.5 dB	-206.7 dB	-202.4 dB	-201.8 dB	-201.9 dB	-202.7 dB	-203.0 dB	-202.9 dB
0.800 Hz	-200.7 dB	-200.4 dB	-208.4 dB	-204.9 dB	-202.3 dB	-204.0 dB	-203.8 dB	-205.3 dB	-204.3 dB
1.000 Hz	-204.5 dB	-202.8 dB	-206.9 dB	-205.7 dB	-204.6 dB	-205.2 dB	-205.9 dB	-206.8 dB	-205.8 dB
1.250 Hz	-205.0 dB	-202.8 dB	-209.5 dB	-206.5 dB	-205.7 dB	-206.9 dB	-206.6 dB	-207.8 dB	-206.7 dB
1.600 Hz	-205.1 dB	-202.7 dB	-211.3 dB	-207.9 dB	-206.6 dB	-207.6 dB	-207.2 dB	-208.8 dB	-207.4 dB
2.000 Hz	-206.0 dB	-202.7 dB	-210.0 dB	-208.2 dB	-207.2 dB	-208.3 dB	-207.6 dB	-209.2 dB	-207.7 dB
2.500 Hz	-205.6 dB	-202.4 dB	-210.7 dB	-207.8 dB	-207.0 dB	-209.0 dB	-207.4 dB	-209.4 dB	-207.7 dB
3.150 Hz 4.000 Hz	-203.3 dB -196.6 dB	-202.1 dB -198.4 dB	-211.1 dB -202.4 dB	-208.5 dB -209.3 dB	-206.4 dB -201.4 dB	-208.0 dB -208.7 dB	-206.7 dB -205.8 dB	-209.9 dB -209.6 dB	-207.2 dB -207.7 dB
	-196.6 dB -199.2 dB	-198.4 dB -196.8 dB							
5.000 Hz			-203.3 dB	-208.4 dB	-204.2 dB	-209.4 dB	-206.5 dB	-208.6 dB	-208.7 dB
6.300 Hz	-198.9 dB -202.2 dB	-202.4 dB -201.0 dB	-206.9 dB -206.8 dB	-208.7 dB -207.5 dB	-204.5 dB -203.4 dB	-208.6 dB -208.4 dB	-205.2 dB	-208.2 dB	-208.3 dB
8.000 Hz	-202.2 dB -198.6 dB			-207.5 dB -206.2 dB	-203.4 dB -199.5 dB		-203.6 dB	-207.3 dB	-207.8 dB
10.000 Hz 12.500 Hz	i	-200.0 dB -194.7 dB	-206.0 dB	-206.2 dB -202.7 dB		-207.8 dB	-200.2 dB -191.9 dB	-206.6 dB	-206.6 dB
	-193.1 dB -192.2 dB	-194.7 dB -191.1 dB	-199.0 dB -193.8 dB		-194.8 dB	-203.1 dB		-201.7 dB	-199.6 dB
16.000 Hz			<u> </u>	-201.5 dB -192.3 dB	-190.6 dB	-200.0 dB	-186.1 dB	-188.3 dB	-190.9 dB
20.000 Hz	-187.0 dB	-185.7 dB	-187.3 dB		-181.2 dB	-193.0 dB	-182.0 dB	-183.2 dB	-186.5 dB
25.000 Hz	-190.7 dB	-187.2 dB	-189.2 dB	-196.5 dB	-184.5 dB	-198.7 dB	-185.7 dB	-184.6 dB	-189.7 dB
31.500 Hz	-194.3 dB -194.7 dB	-191.1 dB -187.1 dB	-192.3 dB	-195.2 dB	-182.5 dB	-198.2 dB -191.5 dB	-188.1 dB -185.9 dB	-183.7 dB	-191.2 dB
40.000 Hz 50.000 Hz	-194.7 dB -193.4 dB	-187.1 dB -190.5 dB	-193.3 dB	-190.3 dB -188.3 dB	-166.6 dB -172.1 dB	-191.5 dB -184.2 dB	-185.9 dB -182.1 dB	-169.5 dB -169.7 dB	-185.4 dB
		-190.5 dB -188.6 dB	-192.5 dB -190.2 dB						-180.2 dB
63.000 Hz 80.000 Hz	-188.7 dB -196.8 dB			-173.3 dB	-188.8 dB	-181.9 dB -202.5 dB	-180.2 dB -198.8 dB	-187.3 dB	-181.3 dB
00.000 ⊓Z	-130.9 UB	-195.3 dB	-196.8 dB	-195.2 dB	-197.8 dB	-202.5 UB	-130.9 UB	-198.7 dB	-200.2 dB

3.2.4.1 Z Axis

The figure below shows the waveform time series for the recordings. The window regions bounded by the red lines indicate the 8 hour segment of data used for analysis.

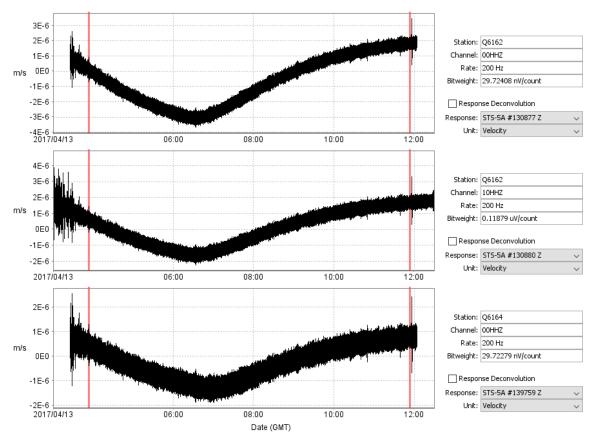


Figure 21 Self Noise Time Series

The figures below show the raw power spectra, corrected for the individual response models, and the coherence between all combinations of seismometer pairs.

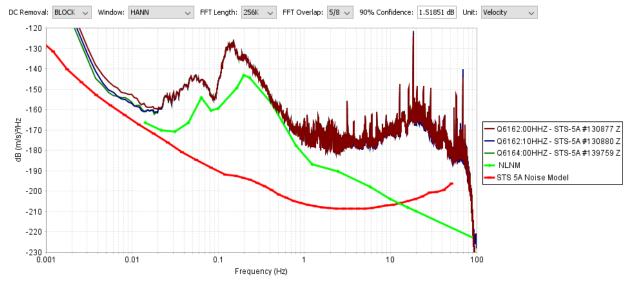
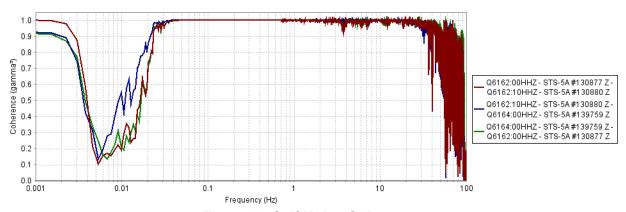



Figure 22 Self Noise Raw Power Spectra

Figure 23 Self Noise Coherence

Computing the incoherent portion of the signal using the 3-channel coherence method (Sleeman, 2007) results in the following figure. Note that the Seismic Low Noise Model (NLNM) and the manufacturer supplied STS-5A noise model are overlaid for comparison.

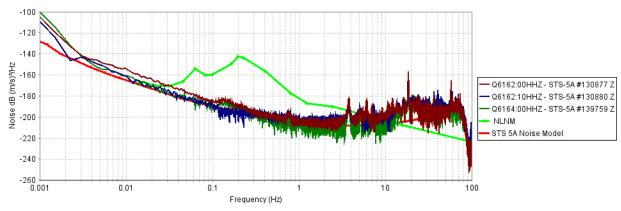


Figure 24 Self Noise

We observe that there is good signal coherence, even when recording just quiet background, between 0.04 and 25 Hz. Coherence is lost below 0.05 Hz due to the sensor self-noise rising above the level of the recorded background. Coherence is likely lost above 25 Hz due to the seismometers not being perfectly co-located and local site noise resulting in incoherent ground motion observed at the instruments.

When applying coherence analysis techniques, it is common for any imperfection in the system (axis alignment, sensor co-location, pier imperfections, etc.) to result in portions of the recorded signal being incoherent between the sensors. There is some scatter in the estimate of the selfnoise at higher frequencies, > 10 Hz, due to the levels of site-noise present.

3.2.4.2 N Axis

The figure below shows the waveform time series for the recordings. The window regions bounded by the red lines indicate the 8 hour segment of data used for analysis.

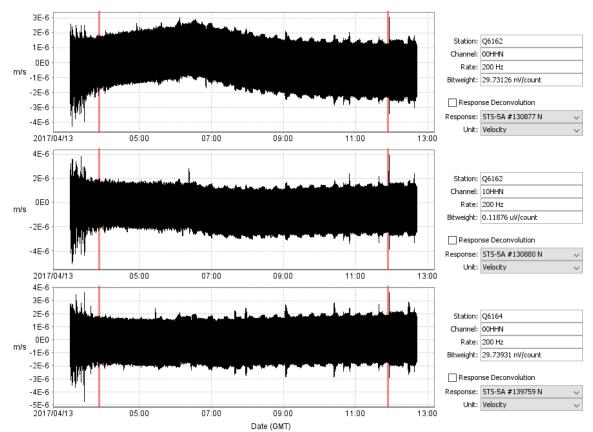


Figure 25 Self Noise Time Series

The figures below show the raw power spectra, corrected for the individual response models, and the coherence between all combinations of seismometer pairs.

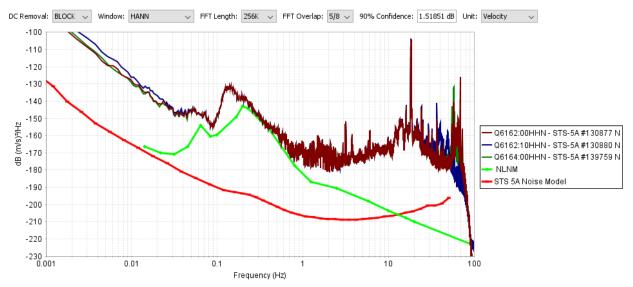


Figure 26 Self Noise Raw Power Spectra

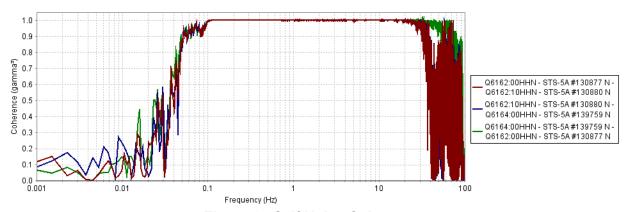


Figure 27 Self Noise Coherence

Computing the incoherent portion of the signal using the 3-channel coherence method (Sleeman, 2007) results in the following figure. Note that the Seismic Low Noise Model (NLNM) and the manufacturer supplied STS-5A noise model are overlaid for comparison.

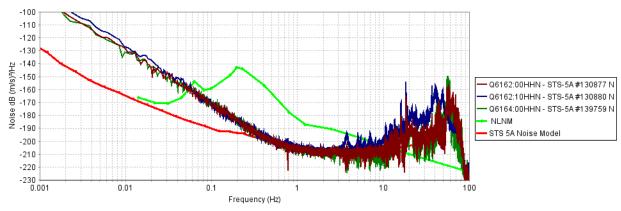


Figure 28 Self Noise

We observe that there is good signal coherence, even when recording just quiet background, between 0.1 and 25 Hz. Coherence is lost below 0.1 Hz due to the sensor self-noise rising above the level of the recorded background. Coherence is likely lost above 25 Hz due to the seismometers not being perfectly co-located and local site noise resulting in incoherent ground motion observed at the instruments.

When applying coherence analysis techniques, it is common for any imperfection in the system (axis alignment, sensor co-location, pier imperfections, etc.) to result in portions of the recorded signal being incoherent between the sensors. This is observable in the micro-seism that bleeds through between 0.1 and 0.5 Hz. In addition, there is some scatter in the estimate of the selfnoise at higher frequencies, > 20 Hz, due to the levels of site-noise present.

3.2.4.3 E Axis

The figure below shows the waveform time series for the recordings. The window regions bounded by the red lines indicate the 8 hour segment of data used for analysis.

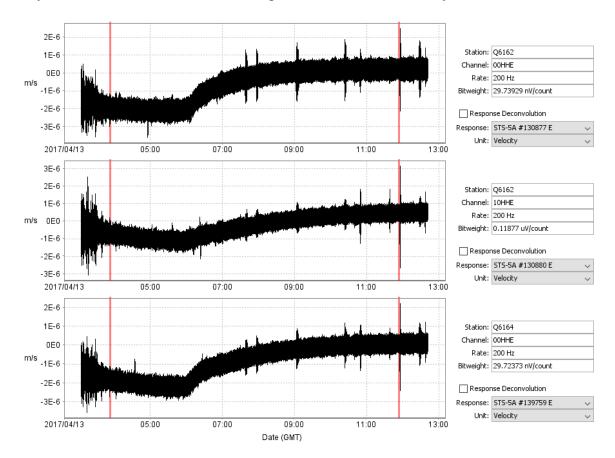


Figure 29 Self Noise Time Series

The figures below show the raw power spectra, corrected for the individual response models, and the coherence between all combinations of seismometer pairs.

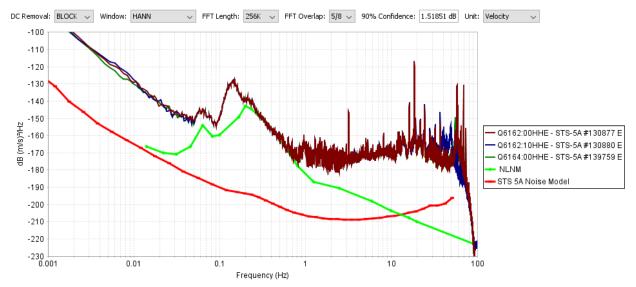
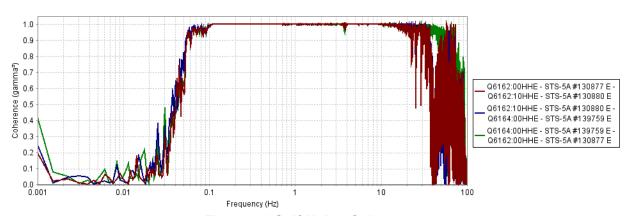



Figure 30 Self Noise Raw Power Spectra

Figure 31 Self Noise Coherence

Computing the incoherent portion of the signal using the 3-channel coherence method (Sleeman, 2007) results in the following figure. Note that the Seismic Low Noise Model (NLNM) and the manufacturer supplied STS-5A noise model are overlaid for comparison.



Figure 32 Self Noise

We observe that there is good signal coherence, even when recording just quiet background, between 0.1 and 20 Hz. Coherence is lost below 0.1 Hz due to the sensor self-noise rising above the level of the recorded background. Coherence is likely lost above 20 Hz due to the seismometers not being perfectly co-located and local site noise resulting in incoherent ground motion observed at the instruments.

When applying coherence analysis techniques, it is common for any imperfection in the system (axis alignment, sensor co-location, pier imperfections, etc.) to result in portions of the recorded signal being incoherent between the sensors. This is observable in the micro-seism that bleeds through between 0.1 and 0.5 Hz. In addition, there is some scatter in the estimate of the selfnoise at higher frequencies, > 20 Hz, due to the levels of site-noise present.

3.3 Dynamic Range

Dynamic Range is defined to be the ratio between the power of the largest and smallest signals that may be measured.

3.3.1 Measurand

The Dynamic Range is measured as dB of the ratio between the power in the largest and smallest signals. The largest signal is defined to be a sinusoid with amplitude equal to the full scale input of the seismometer. The smallest signal is defined to have power equal to the self-noise of the seismometer. This definition of dynamic range is consistent with the definition of signal-to-noise and distortion ratio (SINAD) for digitizers (IEEE Std 1241-2010 section 9.2).

3.3.2 Configuration

There is no test configuration for the dynamic range test.

The full scale value used for the largest signal comes from the manufacturer's nominal specifications. The value for the smallest signal comes from the evaluated seismometer self-noise determined in section 3.2 Self-Noise.

3.3.3 Analysis

The dynamic range over a given pass-band is:

$$\label{eq:Dynamic Range} \begin{split} \textit{Dynamic Range} &= 10 \cdot \log_{10} \left(\frac{\textit{signal power}}{\textit{noise power}} \right) \end{split}$$
 Where
$$\begin{aligned} \textit{signal power} &= \left(\textit{fullscale} / \sqrt{2} \right)^2 \\ \textit{noise power} &= \left(\textit{RMS Noise} \right)^2 \end{aligned}$$

The application pass-band over which the noise is integrated should be selected to be consistent with the application pass-band.

3.3.4 Result

The RMS noise levels are obtained from the sensor self-noise. The full scale value provided by the manufacturer was 20 Volts peak output.

Table 12 Dynamic Range - Z

	8.3 mHz - 50 Hz	20 mHz - 1 Hz	20 mHz - 16 Hz	0.5 Hz - 16 Hz
STS5A #130877	128.15819 dB	144.03839 dB	140.93607 dB	143.82027 dB
STS5A #130880	128.02158 dB	149.47748 dB	143.1165 dB	144.2116 dB
STS5A #139759	129.84408 dB	149.31338 dB	145.43907 dB	147.68641 dB

Table 13 Dynamic Range - N

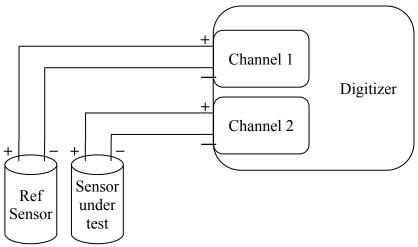
	8.3 mHz - 50 Hz	20 mHz - 1 Hz	20 mHz - 16 Hz	0.5 Hz - 16 Hz
STS5A #130877	110.44798 dB	123.22286 dB	123.21681 dB	151.59184 dB
STS5A #130880	106.74898 dB	120.58146 dB	120.56545 dB	144.85784 dB
STS5A #139759	111.92984 dB	123.41867 dB	123.40887 dB	149.74505 dB

Table 14 Dynamic Range - E

	8.3 mHz - 50 Hz	20 mHz - 1 Hz	20 mHz - 16 Hz	0.5 Hz - 16 Hz
STS5A #130877	110.33589 dB	122.78521 dB	122.73301 dB	141.94145 dB
STS5A #130880	108.42273 dB	123.43786 dB	123.40599 dB	144.73587 dB
STS5A #139759	112.63939 dB	123.90683 dB	123.88667 dB	147.17048 dB

As may be observed in the table above, dynamic range values can vary considerably depending upon the frequency pass-band observed. However, for the application pass-band of 0.02-16 Hz, the dynamic range was evaluated to be between 120.5 and 145.4 dB.

3.4 Frequency Response Verification


The Frequency Response Verification tests measured the amplitude and phase response of a sensor over a frequency band of interest.

3.4.1 Measurand

The quantity being measured is the sensor's amplitude and phase response, relative to the sensitivity at 1 Hz in V/Pa, over a frequency pass-band.

3.4.2 Configuration

The sensor under test and a reference sensor with known response characteristics are co-located so that they are both measuring a common earth motion.

Figure 33 Frequency Response Configuration Diagram

The sensors are allowed to stabilize and then are operated until suitable ground-motion from an earthquake is recorded to provide high coherence between the sensors at the calibration frequency of 1 Hz.

Table 15 Frequency Response Testbed Equipment

	Manufacturer / Model	Serial Number	Nominal
			Configuration
Reference Sensor	Kinemetrics STS-2	# 120651	1500 V/(m/s)
Reference Digitizer	Kinemetrics Q330	# 1551	200 Hz, 40 Vpp
Sensor under test	Kinemetrics STS-5A	# 130877, 130880	1500 V/(m/s)
Sensor Digitizers	Kinemetrics Q330	# 6162	200 Hz, 40 Vpp

The digitizer records the output of the reference sensor and the sensor under test simultaneously. The reference sensor recording is used for comparison against the sensor under test recording.

3.4.3 Analysis

The data recorded using the reference sensor and digitizer has the calibrated bit-weight, sensitivity, and response model applied to convert the data to ground motion.

The data recorded using the sensor under test and digitizer has just the calibrated bit-weight and sensitivity applied to convert the data to ground motion. The response model shape is not applied so that any resulting amplitude or phase response may be observed and compared to the reference.

The relative transfer function, both amplitude and phase, is computed between the two channels (Merchant, 2011) from the power spectral density:

 $H[k], 0 \le k \le N-1$

3.4.4 Result

Due to the difficulty in finding a single earthquake that would provide sufficient ground-motion across all frequencies, three separate earthquakes were identified that provided the required signal amplitudes for low frequencies (< 0.1 Hz), mid frequencies (> 1 Hz), and high frequencies (> 1 Hz). In summary, these earthquakes are:

Table 16 Frequency Response Earthquakes

Frequency Range	Date / Time (UTC)	Magnitude	Location
< 0.1 Hz	July 17, 2017, 23:44	7.7	Eastern Russia
0.1 – 1 Hz	June 6, 2017, 06:30	5.8	Montana
> 1 Hz	July 14, 2017, 13:46	4.2	Oklahoma

The following table contains the composite seismometer response values, smoothed with a filter, expressed as dB of amplitude relative to each seismometers sensitivity at 1 Hz and degrees of phase.

As may be seen, the measured response matches very closely with the expected nominal response. The only deviation is at low frequencies, below 0.003 Hz, where the lack of signal coherence limited the ability to resolve the response and at high frequencies where the phase response rolled off slightly slower than the nominal.

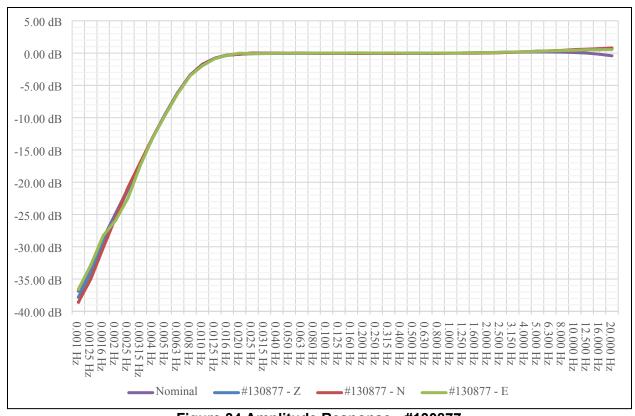


Figure 34 Amplitude Response - #130877

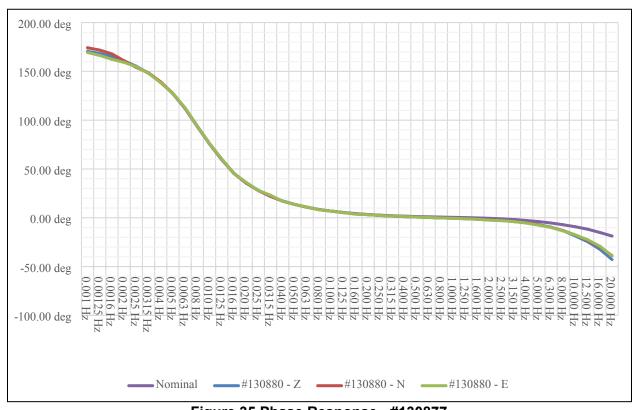


Figure 35 Phase Response - #130877

Table 17 Frequency Response - #130877

Table 17 Frequency Response - #130877								
_	Nominal		Z	T	N		Е	T = .
Frequency	Amplitude	Phase	Amplitude	Phase	Amplitude	Phase	Amplitude	Phase
0.00100 Hz	-36.87 dB	170.22 deg	-37.81 dB	170.55 deg	-38.59 dB	164.67 deg	-36.59 dB	172.65 deg
0.00125 Hz	-32.99 dB	167.75 deg	-33.96 dB	168.42 deg	-35.00 dB	160.70 deg	-32.85 dB	173.54 deg
0.00160 Hz	-28.71 dB	164.25 deg	-29.01 dB	165.24 deg	-30.18 dB	155.76 deg	-28.29 dB	172.79 deg
0.00200 Hz	-24.84 dB	160.18 deg	-25.27 dB	160.81 deg	-25.50 dB	152.77 deg	-25.92 dB	163.50 deg
0.00250 Hz	-20.98 dB	154.99 deg	-21.19 dB	155.31 deg	-20.81 dB	149.64 deg	-22.46 dB	154.18 deg
0.00315 Hz	-17.02 dB	148.03 deg	-17.11 dB	148.21 deg	-16.90 dB	146.28 deg	-17.38 dB	146.21 deg
0.00400 Hz	-13.01 dB	138.56 deg	-13.09 dB	138.77 deg	-13.04 dB	138.69 deg	-13.09 dB	136.73 deg
0.00500 Hz	-9.44 dB	126.99 deg	-9.51 dB	127.38 deg	-9.55 dB	126.98 deg	-9.60 dB	127.05 deg
0.00630 Hz	-6.12 dB	111.79 deg	-6.17 dB	112.28 deg	-6.19 dB	111.73 deg	-6.30 dB	113.14 deg
0.00800 Hz	-3.42 dB	93.25 deg	-3.42 dB	93.79 deg	-3.47 dB	93.62 deg	-3.52 dB	93.46 deg
0.01000 Hz	-1.75 dB	75.41 deg	-1.72 dB	75.90 deg	-1.78 dB	75.67 deg	-1.96 dB	76.40 deg
0.01250 Hz	-0.82 dB	59.45 deg	-0.78 dB	59.98 deg	-0.82 dB	60.10 deg	-0.87 dB	60.58 deg
0.01600 Hz	-0.35 dB	45.27 deg	-0.28 dB	45.41 deg	-0.32 dB	45.19 deg	-0.33 dB	45.03 deg
0.02000 Hz	-0.17 dB	35.46 deg	-0.12 dB	35.62 deg	-0.18 dB	35.82 deg	-0.02 dB	36.49 deg
0.02500 Hz	-0.10 dB	27.92 deg	-0.02 dB	28.03 deg	0.02 dB	27.93 deg	-0.08 dB	28.11 deg
0.03150 Hz	-0.06 dB	21.90 deg	-0.01 dB	21.92 deg	-0.03 dB	22.15 deg	-0.07 dB	23.41 deg
0.04000 Hz	-0.05 dB	17.10 deg	0.01 dB	17.02 deg	0.00 dB	16.86 deg	-0.02 dB	16.84 deg
0.05000 Hz	-0.05 dB	13.61 deg	0.01 dB	13.50 deg	0.00 dB	13.57 deg	0.00 dB	13.64 deg
0.06300 Hz	-0.04 dB	10.76 deg	0.01 dB	10.66 deg	0.02 dB	10.92 deg	-0.03 dB	10.99 deg
0.08000 Hz	-0.04 dB	8.45 deg	0.01 dB	8.29 deg	-0.01 dB	8.12 deg	0.01 dB	8.13 deg
0.1000 Hz	-0.04 dB	6.75 deg	0.01 dB	6.72 deg	-0.04 dB	6.87 deg	0.02 dB	6.78 deg
0.1250 Hz	-0.04 dB	5.39 deg	0.00 dB	5.34 deg	-0.01 dB	5.23 deg	0.00 dB	5.25 deg
0.1600 Hz	-0.04 dB	4.20 deg	0.00 dB	3.95 deg	-0.05 dB	3.79 deg	0.03 dB	3.63 deg
0.2000 Hz	-0.04 dB	3.35 deg	0.00 dB	3.12 deg	-0.05 dB	3.26 deg	0.03 dB	3.17 deg
0.2500 Hz	-0.04 dB	2.67 deg	-0.01 dB	2.39 deg	-0.03 dB	2.37 deg	0.00 dB	2.37 deg
0.3150 Hz	-0.04 dB	2.10 deg	0.00 dB	1.66 deg	-0.05 dB	1.90 deg	0.02 dB	1.84 deg
0.4000 Hz	-0.04 dB	1.63 deg	-0.01 dB	1.13 deg	-0.04 dB	1.22 deg	0.01 dB	1.21 deg
0.5000 Hz	-0.03 dB	1.27 deg	-0.01 dB	0.71 deg	-0.02 dB	0.79 deg	-0.01 dB	0.73 deg
0.6300 Hz	-0.02 dB	0.96 deg	-0.01 dB	0.30 deg	-0.03 dB	0.35 deg	0.01 dB	0.22 deg
0.8000 Hz	-0.01 dB	0.68 deg	-0.01 dB	-0.11 deg	-0.04 dB	-0.09 deg	0.02 dB	-0.20 deg
1.0000 Hz	0.00 dB	0.43 deg	0.00 dB	-0.47 deg	-0.01 dB	-0.50 deg	0.00 dB	-0.62 deg
1.2500 Hz	0.02 dB	0.16 deg	0.02 dB	-0.90 deg	-0.02 dB	-0.90 deg	0.04 dB	-1.05 deg
1.6000 Hz	0.05 dB	-0.18 deg	0.03 dB	-1.39 deg	-0.01 dB	-1.51 deg	0.07 dB	-1.66 deg
2.0000 Hz	0.08 dB	-0.59 deg	0.07 dB	-2.06 deg	0.02 dB	-2.26 deg	0.09 dB	-2.51 deg
2.5000 Hz	0.11 dB	-1.12 deg	0.10 dB	-2.75 deg	0.05 dB	-2.75 deg	0.11 dB	-3.10 deg
3.1500 Hz	0.14 dB	-1.85 deg	0.15 dB	-3.83 deg	0.14 dB	-3.80 deg	0.16 dB	-4.01 deg
4.0000 Hz	0.16 dB	-2.81 deg	0.21 dB	-5.38 deg	0.18 dB	-5.09 deg	0.24 dB	-5.57 deg
5.0000 Hz	0.17 dB	-3.94 deg	0.27 dB	-7.01 deg	0.30 dB	-7.30 deg	0.27 dB	-7.68 deg
6.3000 Hz	0.17 dB	-5.37 deg	0.32 dB	-10.10 deg	0.35 dB	-9.92 deg	0.34 dB	-10.17 deg
8.0000 Hz	0.14 dB	-7.18 deg	0.39 dB	-13.56 deg	0.42 dB	-13.59 deg	0.39 dB	-13.71 deg
10.0000 Hz	0.09 dB	-9.24 deg	0.42 dB	-19.74 deg	0.55 dB	-18.68 deg	0.44 dB	-17.63 deg
12.5000 Hz	-0.01 dB	-11.73 deg	0.55 dB	-26.76 deg	0.61 dB	-24.95 deg	0.50 dB	-22.79 deg
16.0000 Hz	-0.18 dB	-15.09 deg	0.51 dB	-35.66 deg	0.69 dB	-30.32 deg	0.53 dB	-30.03 deg
20.0000 Hz	-0.42 dB	-18.74 deg	0.73 dB	-46.44 deg	0.79 dB	-41.33 deg	0.53 dB	-38.40 deg

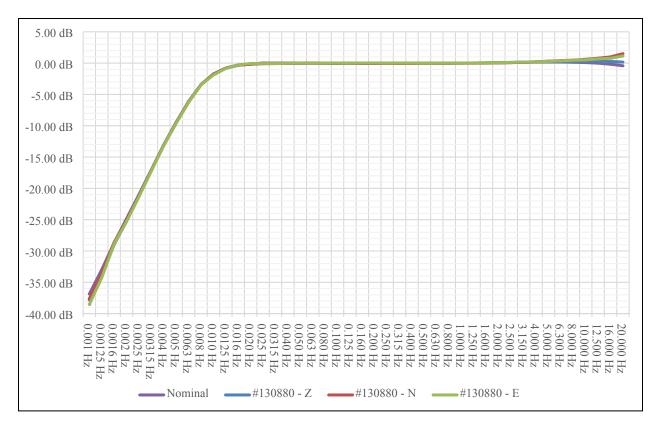


Figure 36 Amplitude Response - #130880

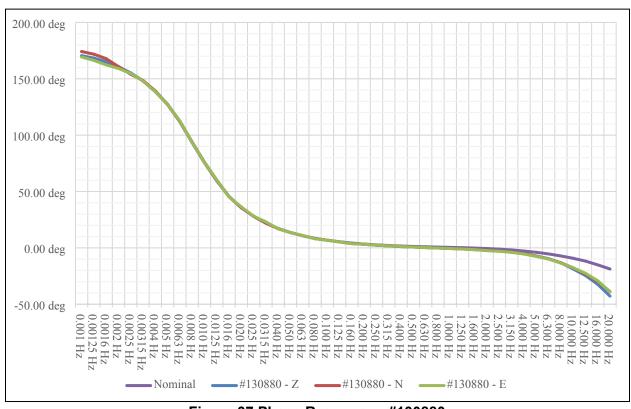


Figure 37 Phase Response - #130880

Table 18 Frequency Response - #130880

Table 18 Frequency Response - #130880								
	Nominal		Z		N		Е	
Frequency	Amplitude	Phase	Amplitude	Phase	Amplitude	Phase	Amplitude	Phase
0.00100 Hz	-37.81 dB	170.50 deg	-37.62 dB	174.19 deg	-38.54 dB	169.39 deg	-37.81 dB	170.50 deg
0.00125 Hz	-33.94 dB	168.35 deg		171.81 deg	-34.25 dB	166.32 deg	-33.94 dB	168.35 deg
0.00160 Hz	-28.98 dB	165.15 deg	-28.63 dB	167.88 deg	-28.86 dB	162.34 deg	-28.98 dB	165.15 deg
0.00200 Hz	-25.24 dB	160.70 deg	-25.11 dB	160.80 deg	-25.30 dB	159.17 deg	-25.24 dB	160.70 deg
0.00250 Hz	-21.17 dB	155.22 deg	-21.20 dB	153.99 deg	-21.33 dB	154.74 deg	-21.17 dB	155.22 deg
0.00315 Hz	-17.11 dB	148.21 deg	-17.12 dB	148.49 deg	-17.20 dB	148.01 deg	-17.11 dB	148.21 deg
0.00400 Hz	-13.10 dB	138.77 deg	-13.13 dB	139.19 deg	-13.13 dB	138.43 deg	-13.10 dB	138.77 deg
0.00500 Hz	-9.53 dB	127.34 deg	-9.53 dB	127.35 deg	-9.61 dB	127.28 deg	-9.53 dB	127.34 deg
0.00630 Hz	-6.18 dB	112.28 deg	-6.18 dB	112.23 deg	-6.26 dB	112.57 deg	-6.18 dB	112.28 deg
0.00800 Hz	-3.45 dB	93.88 deg	-3.46 dB	93.64 deg	-3.49 dB	93.60 deg	-3.45 dB	93.88 deg
0.01000 Hz	-1.73 dB	75.99 deg	-1.76 dB	75.89 deg	-1.89 dB	75.80 deg	-1.73 dB	75.99 deg
0.01250 Hz	-0.79 dB	60.01 deg	-0.79 dB	60.07 deg	-0.85 dB	60.27 deg	-0.79 dB	60.01 deg
0.01600 Hz	-0.29 dB	45.61 deg	-0.32 dB	45.26 deg	-0.31 dB	45.13 deg	-0.29 dB	45.61 deg
0.02000 Hz	-0.12 dB	35.72 deg	-0.16 dB	35.87 deg	-0.05 dB	36.34 deg	-0.12 dB	35.72 deg
0.02500 Hz	-0.03 dB	28.13 deg	0.02 dB	27.89 deg	-0.07 dB	28.06 deg	-0.03 dB	28.13 deg
0.03150 Hz	-0.01 dB	22.00 deg	-0.02 dB	22.12 deg	-0.07 dB	23.10 deg	-0.01 dB	22.00 deg
0.04000 Hz	0.01 dB	17.14 deg	0.01 dB	16.89 deg	-0.02 dB	16.87 deg	0.01 dB	17.14 deg
0.05000 Hz	0.01 dB	13.62 deg	0.01 dB	13.57 deg	-0.01 dB	13.62 deg	0.01 dB	13.62 deg
0.06300 Hz	0.01 dB	10.73 deg	0.02 dB	10.87 deg	-0.03 dB	10.93 deg	0.01 dB	10.73 deg
0.08000 Hz	0.01 dB	8.35 deg	-0.01 dB	8.13 deg	0.01 dB	8.17 deg	0.01 dB	8.35 deg
0.1000 Hz	0.01 dB	6.74 deg	-0.03 dB	6.85 deg	0.01 dB	6.78 deg	0.01 dB	6.74 deg
0.1250 Hz	0.00 dB	5.33 deg	0.00 dB	5.20 deg	0.00 dB	5.23 deg	0.00 dB	5.33 deg
0.1600 Hz	0.00 dB	4.02 deg	-0.04 dB	3.79 deg	0.03 dB	3.68 deg	0.00 dB	4.02 deg
0.2000 Hz	0.00 dB	3.16 deg	-0.04 dB	3.22 deg	0.02 dB	3.15 deg	0.00 dB	3.16 deg
0.2500 Hz	0.00 dB	2.42 deg	-0.02 dB	2.35 deg	0.00 dB	2.37 deg	0.00 dB	2.42 deg
0.3150 Hz	-0.01 dB	1.67 deg	-0.05 dB	1.87 deg	0.02 dB	1.81 deg	-0.01 dB	1.67 deg
0.4000 Hz	-0.01 dB	1.14 deg	-0.03 dB	1.20 deg	0.00 dB	1.20 deg	-0.01 dB	1.14 deg
0.5000 Hz	-0.01 dB	0.71 deg	-0.01 dB	0.79 deg	-0.01 dB	0.72 deg	-0.01 dB	0.71 deg
0.6300 Hz	0.00 dB	0.27 deg	-0.03 dB	0.35 deg	0.00 dB	0.25 deg	0.00 dB	0.27 deg
0.8000 Hz	0.00 dB	-0.13 deg	-0.03 dB	-0.10 deg	0.02 dB	-0.19 deg	0.00 dB	-0.13 deg
1.0000 Hz	0.00 dB	-0.50 deg	0.00 dB	-0.51 deg	0.00 dB	-0.59 deg	0.00 dB	-0.50 deg
1.2500 Hz	0.02 dB	-0.95 deg	-0.01 dB	-0.91 deg	0.04 dB	-1.05 deg	0.02 dB	-0.95 deg
1.6000 Hz	0.03 dB	-1.45 deg	0.00 dB	-1.53 deg	0.07 dB	-1.64 deg	0.03 dB	-1.45 deg
2.0000 Hz	0.06 dB	-2.09 deg	0.04 dB	-2.26 deg	0.08 dB	-2.46 deg	0.06 dB	-2.09 deg
2.5000 Hz	0.10 dB	-2.81 deg	0.07 dB	-2.76 deg	0.11 dB	-3.02 deg	0.10 dB	-2.81 deg
3.1500 Hz	0.13 dB	-3.81 deg	0.14 dB	-3.92 deg	0.16 dB	-3.95 deg	0.13 dB	-3.81 deg
4.0000 Hz		-5.30 deg		-5.17 deg	0.24 dB	-5.48 deg	0.19 dB	-5.30 deg
5.0000 Hz	0.24 dB	-7.23 deg	0.31 dB	-7.26 deg	0.28 dB	-7.61 deg	0.24 dB	-7.23 deg
6.3000 Hz	0.24 dB	-9.58 deg	0.40 dB	-9.85 deg	0.36 dB	-9.92 deg	0.24 dB	-9.58 deg
8.0000 Hz	0.27 dB	-13.34 deg	0.47 dB	-13.18 deg	0.45 dB	-13.58 deg	0.27 dB	-13.34 deg
10.0000 Hz	0.26 dB	-18.73 deg	0.61 dB	-17.72 deg	0.53 dB	-17.68 deg	0.26 dB	-18.73 deg
12.5000 Hz	0.29 dB	-24.51 deg	0.78 dB	-23.25 deg	0.68 dB	-22.53 deg	0.29 dB	-24.51 deg
16.0000 Hz	0.27 dB	-32.33 deg	0.99 dB	-29.76 deg	0.78 dB	-29.16 deg	0.27 dB	-32.33 deg
20.0000 Hz	0.16 dB	-42.82 deg	1.51 dB	-38.80 deg	1.14 dB	-39.10 deg	0.16 dB	-42.82 deg

3.4.4.1 Low Frequency

The earthquake that was identified for use in determining the low-frequency (< 0.1 Hz) response was reported by USGS as a magnitude 7.7 located at 54.471 N, 168.816 E, and a depth of 11.0 km on July 14, 2017 06:30:17 (UTC).

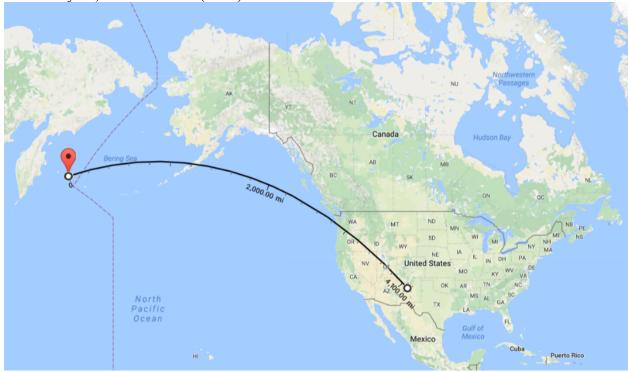


Figure 38 Sensitivity Earthquake Location

These earthquake was approximately 4100 miles (6600 km) from the Sandia FACT site and resulted in an observable waveform signal that lasted over 4 hours in duration.

The figure below shows the waveform time series for the recordings. Only the vertical channel is shown as the two horizontal channels are nearly identical. The window regions bounded by the red lines indicate the segment of data used for analysis.

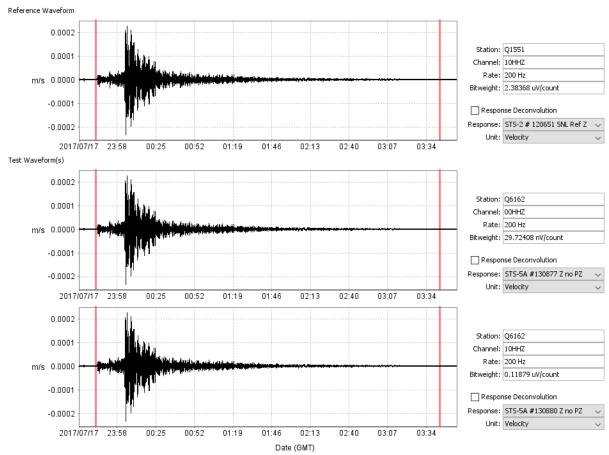


Figure 39 Low Frequency Response Time Series

The figures below show the power spectra, coherence, amplitude response, and phase that were computed from the waveform time series.

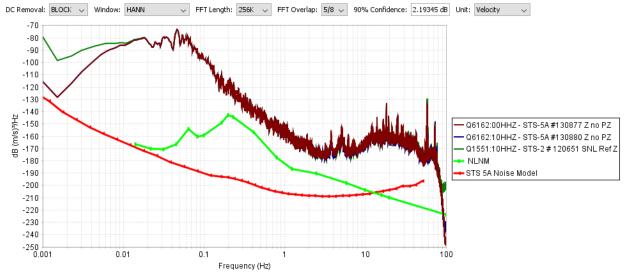


Figure 40 Low Frequency Response Power Spectra

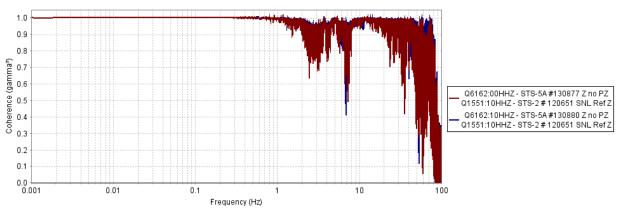


Figure 41 Low Frequency Response Coherence

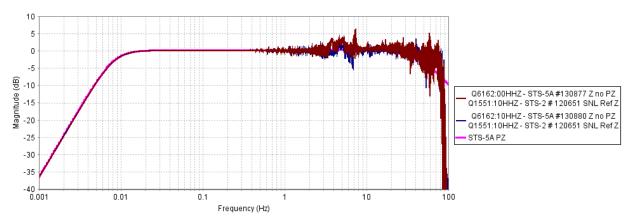


Figure 42 Low Frequency Amplitude Response

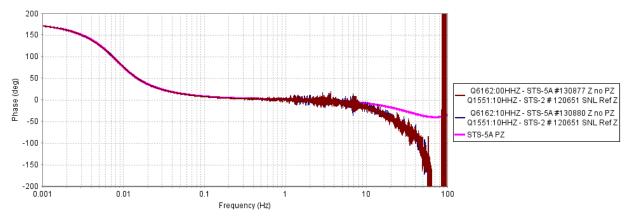


Figure 43 Low Frequency Phase Response

Note that the amplitude and phase response curves should only be interpreted for frequency passbands in which the observed coherence is high, in this case between 0.001 and 1 Hz. Across this pass-band the amplitude and phase response match very closely with the nominal STS 5A response model, shown with a purple line.

3.4.4.2 Mid Frequency

The earthquake that was identified for use in determining the mid-frequency (0.1 - 1 Hz) response was a combination of two earthquakes that occurred in western Montana on July 6, 2017 as reported by the USGS. The first earthquake was a magnitude 5.8 located at 46.881 N, 112.575 W, a depth of 12.2 km, and at 06:30:17 (UTC). The second earthquake, approximately 5 minutes later, was a magnitude 5.0 located at 46.482 N, 112.658 W, a depth of 15.7 km, and at 06:35:35 (UTC).

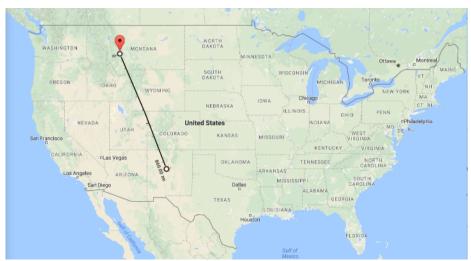


Figure 44 Sensitivity Earthquake Location

These earthquakes were approximately 860 (1384 km) miles from the Sandia FACT site and resulted in an observable waveform signal that lasted over 1 hour in duration.

The figure below shows the waveform time series for the recordings. Only the vertical channel is shown as the two horizontal channels are nearly identical. The window regions bounded by the red lines indicate the segment of data used for analysis.

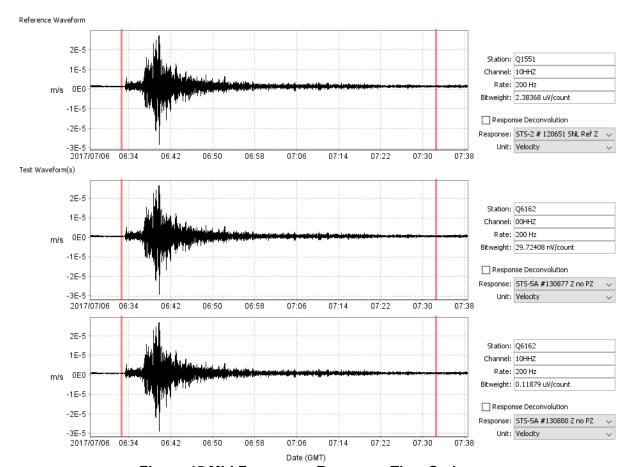
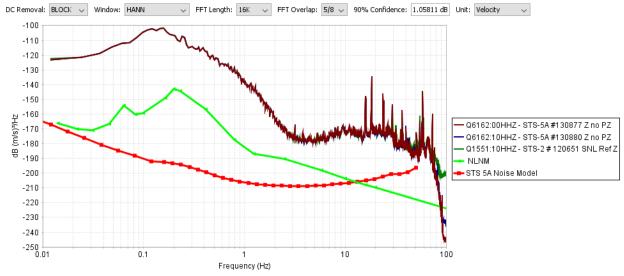
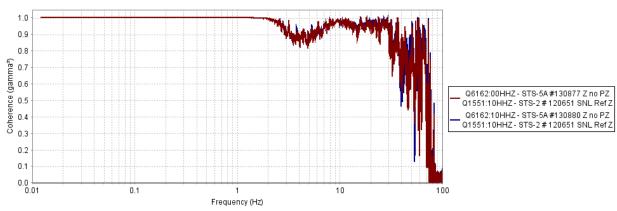




Figure 45 Mid Frequency Response Time Series

The figures below show the power spectra, coherence, amplitude response, and phase that were computed from the waveform time series.

Figure 46 Mid Frequency Response Power Spectra

Figure 47 Mid Frequency Response Coherence

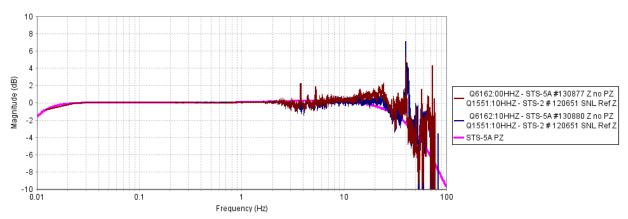


Figure 48 Mid Frequency Amplitude Response

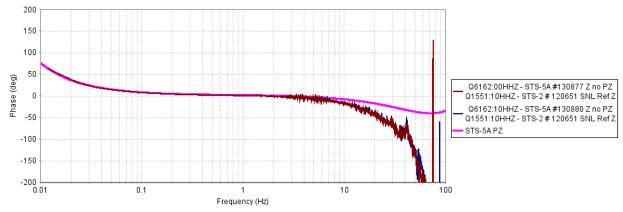


Figure 49 Mid Frequency Phase Response

Note that the amplitude and phase response curves should only be interpreted for frequency passbands in which the observed coherence is high, in this case between 0.01 and 2 Hz. Across this pass-band the amplitude and phase response match very closely with the nominal CMG 3V response model, shown with a purple line.

3.4.4.3 High Frequency

The earthquake that was identified for use in determining the high-frequency (> 1 Hz) response was reported by USGS as a magnitude 4.2 located at 35.859 N, 96.683 W, and a depth of 6.8 km on July 14, 2017 13:47 (UTC).

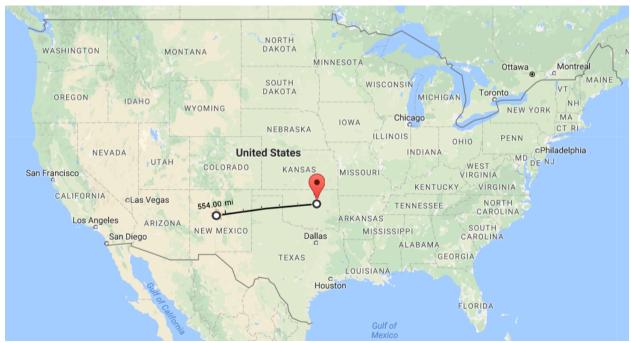


Figure 50 High Frequency Earthquake Location

This earthquake was approximately 554 miles (890 km) from the Sandia FACT site and resulted in an observable waveform signal that lasted 10 minutes in duration.

The figure below shows the waveform time series for the recordings. Only the vertical channel is shown as the two horizontal channels are nearly identical. The window regions bounded by the red lines indicate the segment of data used for analysis.

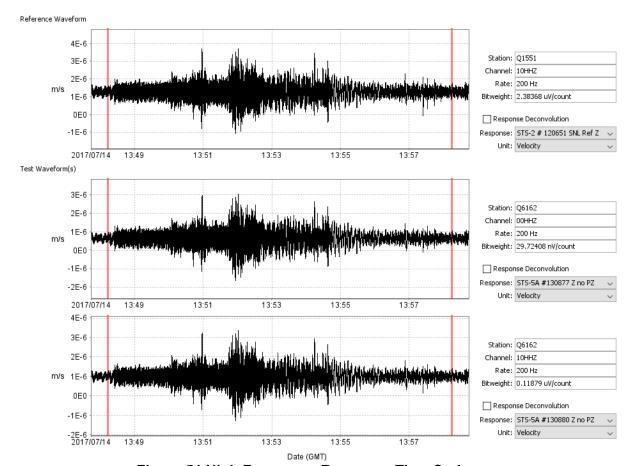
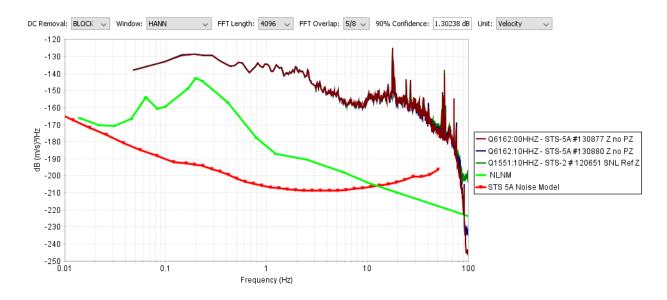



Figure 51 High Frequency Response Time Series

The figures below show the power spectra, coherence, amplitude response, and phase that were computed from the waveform time series.

Figure 52 High Frequency Response Power Spectra

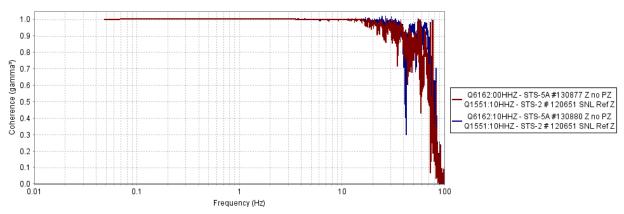


Figure 53 High Frequency Response Coherence

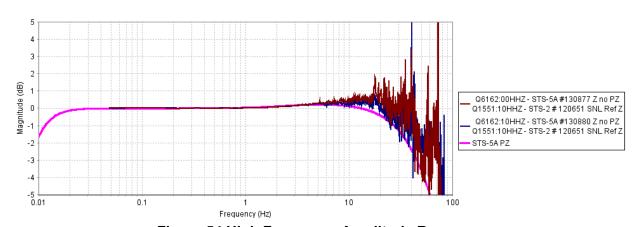


Figure 54 High Frequency Amplitude Response

55

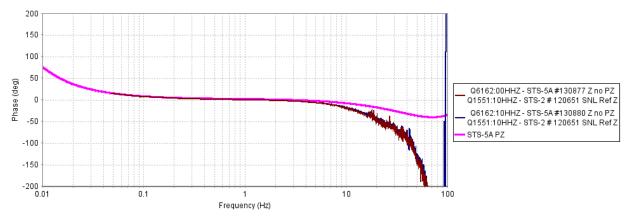


Figure 55 High Frequency Phase Response

Note that the amplitude and phase response curves should only be interpreted for frequency passbands in which the observed coherence is high, in this case between 0.1 and 30 Hz. Across this pass-band the amplitude and phase response match very closely with the nominal CMG 3V response model, shown with a purple line.

3.5 Passband

The Passband test measures the bandwidth of the seismometer determined from the measured amplitude response.

3.5.1 Measurand

The quantity being measured is the low and high frequency limits of the sensor's passband.

3.5.2 Configuration

The sensor under test and a reference sensor with known response characteristics are co-located so that they are both measuring a common earth motion.

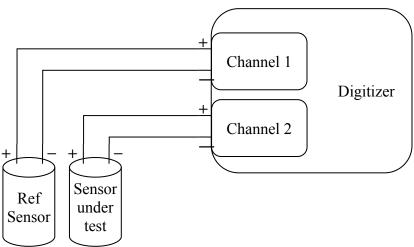


Figure 56 Passband Configuration Diagram

The sensors are allowed to stabilize and then are operated until suitable ground-motion from an earthquake is recorded to provide high coherence between the sensors at the calibration frequency of 1 Hz.

Table 19 Passband Testbed Equipment

Table 101 decodand Teetbed Equipment								
	Manufacturer / Model	Serial Number	Nominal					
			Configuration					
Reference Sensor	Kinemetrics STS-2	# 120651	1500 V/(m/s)					
Reference Digitizer	Kinemetrics Q330	# 1551	200 Hz, 40 Vpp					
Sensor under test	Kinemetrics STS-5A	# 130877, 130880	1500 V/(m/s)					
Sensor Digitizers	Kinemetrics Q330	# 6162	200 Hz, 40 Vpp					

The digitizer records the output of the reference sensor and the sensor under test simultaneously. The reference sensor recording is used for comparison against the sensor under test recording.

3.5.3 Analysis

The data recorded using the reference sensor and digitizer has the calibrated bit-weight, sensitivity, and response model applied to convert the data to ground motion.

The data recorded using the sensor under test and digitizer has just the calibrated bit-weight and sensitivity applied to convert the data to ground motion. The response model shape is not applied so that any resulting amplitude or phase response may be observed and compared to the reference.

The relative transfer function, both amplitude and phase, is computed between the two channels (Merchant, 2011) from the power spectral density:

$$H[k], \ 0 \le k \le N - 1$$

The frequencies at which the response is down 3 dB are measured.

3.5.4 Result

The figures below show the expanded sections of the low and high frequency passband roll-off from the amplitude response data.

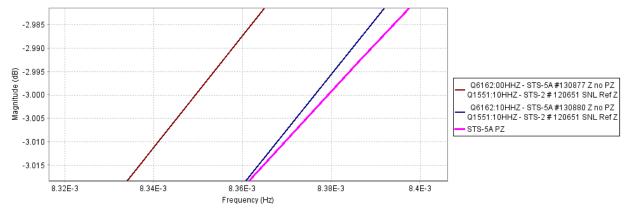


Figure 57 Passband Z Low Frequency

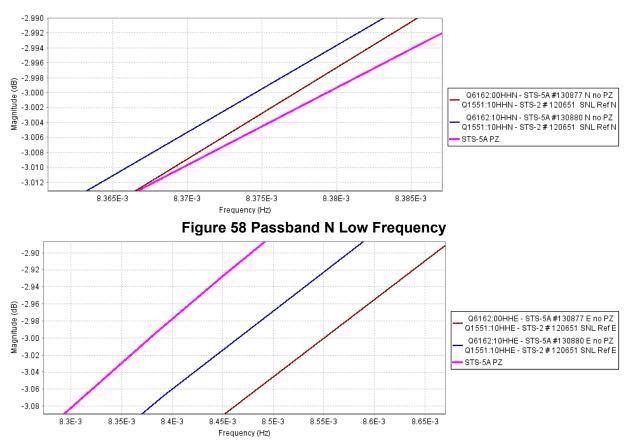


Figure 59 Passband E Low Frequency

The amplitude response from the Response Verification tests are reviewed to determine at what frequencies the amplitude response us reduce by 3 dB from the sensitivity at 1 Hz.

Table 20 Passband

	Chanel	Low Frequency	High Frequency
Nominal		0.0833 Hz (120 sec)	50 Hz
STS5A #130877	Z	0.0835 Hz	> 20 Hz
	N	0.0838 Hz	> 20 Hz
	E	0.0855 Hz	> 20 Hz
STS5A #130880	Z	0.0838 Hz	> 20 Hz
	N	0.0837 Hz	> 20 Hz
	Е	0.0845 Hz	> 20 Hz

We can observe that the low frequency corner matches very closely with the nominal 120 second, or 0.0833 Hz, corner specified for the STS 5A. Due to the data available, it is difficult to evaluate outside of the region in which there is coherence (< 20 Hz). However, it appears that the high frequency corner exceeds the 20 Hz limit of the coherence in this evaluation.

3.6 Calibrator Sensitivity

The Calibrator Sensitivity test is used to measure the sensitivity of the seismometer calibrator.

3.6.1 Measurand

The quantity being measured is the seismometer calibration sensitivity at 1 Hz.

3.6.2 Configuration

The seismometer is connected to a digitizer. The digitizer both recorded the seismometer output and provides a calibration signal that is internally looped back and recorded as shown in the diagram below.

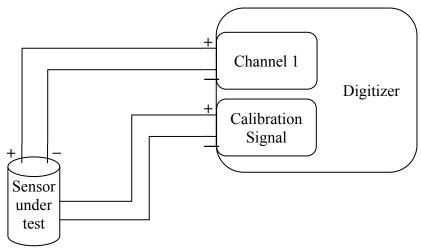


Figure 60 Calibrator Sensitivity Configuration Diagram

Table 21 Calibrator Sensitivity Testbed Equipment

	Manufacturer / Model	Serial Number	Nominal
			Configuration
Sensor under test	Kinemetrics STS-5A	# 130877, 130880	1500 V/(m/s)
Sensor Digitizers	Kinemetrics Q330	# 6162	200 Hz, 40 Vpp

The digitizer is configured to generate a 1 Hz sinusoid for 5 minutes seconds.

3.6.3 Analysis

A minimum of a 10 cycles, or 10 seconds at 1 Hz, of data is defined on the data for the recorded signal segment.

A four parameter sine fit (Merchant, 2011; IEEE-STD1281) is applied to the time segment from the reference meter in Volts and the digitizer channel in Counts in order to determine the sinusoid's amplitude, frequency, phase, and DC offset:

$$V_{in}\sin(2 pi f_{in} t + \theta_{ref}) + V_{dc in}$$

$$V_{out}\sin\left(2\,pi\,f_{out}\,t+\theta_{meas}\,\right)+V_{dc\,out}$$

The seismometer calibrator sensitivity in $V/(m/s^2)$ is computed:

$$G_{calib} = \frac{V_{in}}{\frac{V_{out}}{G_{seis}} * 2\pi f}$$

3.6.4 Result

The Kinemetrics Q330 digitizers have the ability to generate a variety of signals for calibration (Sinsuoidal, Broadband, and Step). In addition, the Q330 digitizers have the ability to loop back back the calibration signal to one of the recording channels. However, it is necessary to designate one of the existing recording channels for this purpose.

The figure below shows a representative waveform time series for the recording made of the seismometer calibration. The reference waveform on top is the vertical seismometer output and the test waveform on the bottom is the calibration input signal. The window regions bounded by the blue lines indicate the segment of data used for analysis.

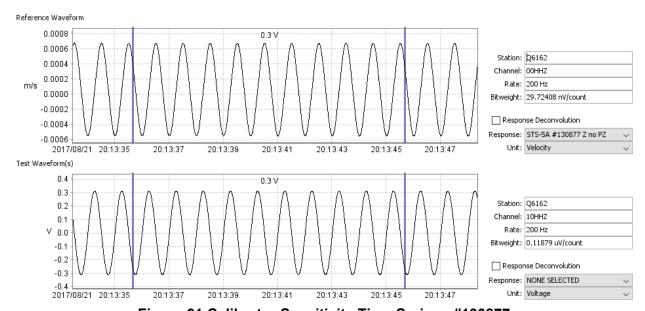


Figure 61 Calibrator Sensitivity Time Series - #130877

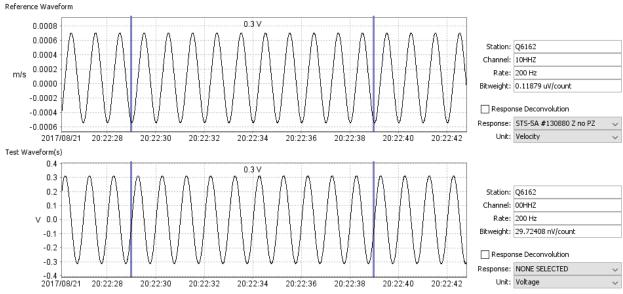


Figure 62 Calibrator Sensitivity Time Series - #130880

The following table contains the computed calibration sensitivities for the vertical channels.

Table 22 Calibrator Sensitivity

	#130877	#130880
Input Voltage	0.3121 V	0.3121 V
Input Frequency	1.0 Hz	1.0 Hz
Output Voltage	0.9035 V	0.9245 V
Seismometer Sensitivity	1508 V/(m/s)	1510 V/(m/s)
Output Velocity	5.991E-4 m/s	6.123E-4 m/s
Calibrator Sensitivity	82.92 V/(m/s^2)	81.11 V/(m/s^2)

For a simultaneous calibration of all three U, V, and W axes, the resulting vertical calibrator sensitivities were determined to be $82.92~V/(m/s^2)$ and $81.11~V/(m/s^2)$ for #130877 and #130880, respectively.

3.7 Calibrator Frequency Response Verification

The Calibrator Frequency Response Verification tests measured the amplitude and phase response of the seismometer calibrator over a frequency band of interest.

3.7.1 Measurand

The quantity being measured is the seismometer calibration frequency response.

3.7.2 Configuration

The seismometer is connected to a digitizer. The digitizer both records the seismometer output and provides a calibration signal that is internally looped back and recorded as shown in the diagram below.

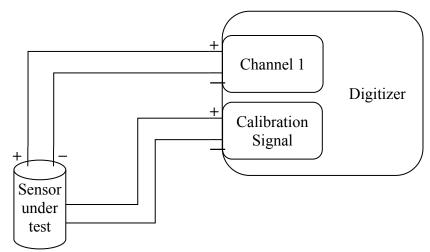


Figure 63 Calibrator Frequency Response Configuration Diagram

Table 23 Calibrator Frequency Response Testbed Equipment

		,poo	p
	Manufacturer / Model	Serial Number	Nominal
			Configuration
Sensor under test	Kinemetrics STS-5A	# 130877, 130880	1500 V/(m/s)
Sensor Digitizers	Kinemetrics Q330	# 6162	200 Hz, 40 Vpp

The digitizer is configured to generate a white noise signal with an amplitude of approximately +/- 1 V for a minimum of one hour.

3.7.3 Analysis

The data recorded using the seismometer output and digitizer has the calibrated bit-weight, sensitivity, and response model applied to convert the data to ground motion corrected for the response shape.

The data recorded from the calibrator loopback has the bit-weight and calibration sensitivity applied to convert the input calibration to ground motion. Note that the calibrator results in an

acceleration of the seismometer proof-mass and the seismometer output is in velocity, therefore a conversion between acceleration and velocity is necessary to compare the two signals.

The relative transfer function, both amplitude and phase, is computed between the two channels (Merchant, 2011) from the power spectral density:

 $H[k], 0 \le k \le N - 1$

3.7.4 Result

The figure below shows a representative waveform time series for the recording made of the seismometer calibration. The window regions bounded by the red lines indicate the segment of data used for analysis. The figures from only one seismometer are shown as the remaining figures are otherwise identical in appearance.

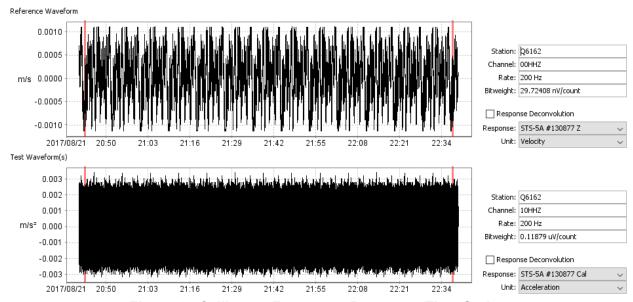


Figure 64 Calibrator Frequency Response Time Series

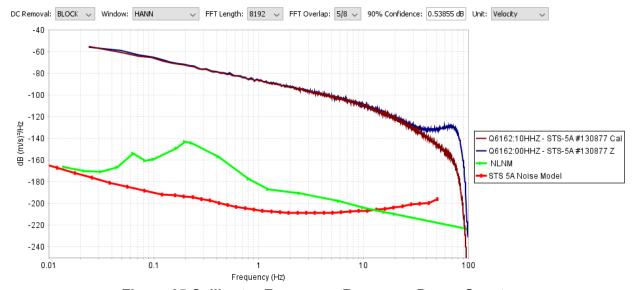


Figure 65 Calibrator Frequency Response Power Spectra

Figure 66 Calibrator Frequency Response Coherence

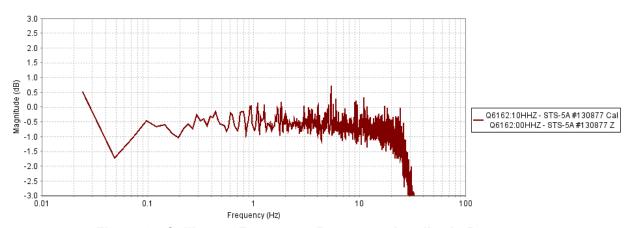


Figure 67 Calibrator Frequency Response Amplitude Response

65

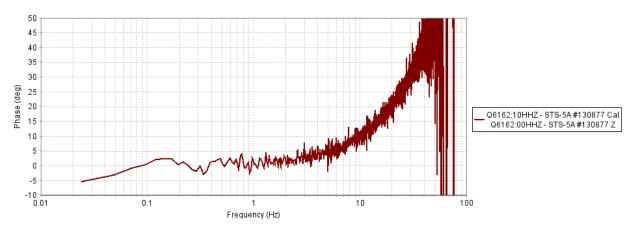


Figure 68 Calibrator Frequency Response Phase Response

The calibrator frequency response values are shown in the table below for dB of power ($20 \log_{10}$) relative to the previously determined calibrator sensitivity and degrees of phase.

Table 24 Calibrator Frequency Response

	STS-5A #1308	77	STS-5A #1308	80
Frequency	Amplitude	Phase	Amplitude	Phase
0.1000 Hz	-0.48 dB	0.15 deg	-0.60 dB	-6.87 deg
0.1250 Hz	-0.48 dB	1.98 deg	-0.60 dB	-3.50 deg
0.1600 Hz	-0.90 dB	2.14 deg	-1.00 dB	-2.33 deg
0.2000 Hz	-0.90 dB	1.11 deg	-1.00 dB	-1.85 deg
0.2500 Hz	-0.73 dB	-0.08 deg	-0.78 dB	-2.89 deg
0.3150 Hz	-0.40 dB	-2.04 deg	-0.47 dB	-4.29 deg
0.4000 Hz	-0.37 dB	0.92 deg	-0.44 dB	-0.67 deg
0.5000 Hz	-0.60 dB	1.25 deg	-0.58 dB	-0.22 deg
0.6300 Hz	-0.70 dB	1.17 deg	-0.77 dB	0.15 deg
0.8000 Hz	-0.41 dB	0.19 deg	-0.74 dB	-0.29 deg
1.0000 Hz	-0.43 dB	0.19 deg	-0.63 dB	-0.24 deg
1.2500 Hz	-0.45 dB	1.57 deg	-0.68 dB	1.14 deg
1.6000 Hz	-0.63 dB	0.98 deg	-0.78 dB	1.47 deg
2.0000 Hz	-0.47 dB	1.40 deg	-0.67 dB	2.12 deg
2.5000 Hz	-0.60 dB	1.69 deg	-0.80 dB	2.75 deg
3.1500 Hz	-0.52 dB	2.32 deg	-0.80 dB	4.36 deg
4.0000 Hz	-0.63 dB	3.13 deg	-0.93 dB	5.84 deg
5.0000 Hz	-0.45 dB	4.46 deg	-0.86 dB	8.35 deg
6.3000 Hz	-0.58 dB	5.63 deg	-1.01 dB	10.99 deg
8.0000 Hz	-0.71 dB	7.58 deg	-0.99 dB	14.89 deg
10.0000 Hz	-0.73 dB	9.92 deg	-0.97 dB	19.52 deg

There does appear to be a difference between the calibrator sensitivity obtained from the sinusoid and the frequency response at 1 Hz of between -0.43 and -0.63 dB. There is no explanation for this difference.

4 SUMMARY

Sensitivity

The STS-5A seismometers were found to have sensitivities at 1 Hz of between 1505 and 1510 V/(m/s). These values differ by between 0.33 % and 0.67 % of the nominal 1500 V/(m/s) and are within the \pm 1 % tolerance quoted by Kinemetrics.

Self-Noise

All three STS-5A seismometers exhibited self-noise levels that are consistent with the manufacturer's nominal noise model for the vertical axis. The horizontal axis appeared to exhibit elevated noise levels at frequencies below 0.5 Hz, which could be an installation issue. Note that above 3 Hz, local site-noise impacted the ability to fully resolve the instrument self-noise and that actual instrument self-noise may be lower than observed.

Dynamic Range

The seismometers were found to have a dynamic range across 0.02 - 16 Hz of between 120.5 and 145.4 dB.

Frequency Response Verification

The seismometers were found to have a frequency response that closely matched the manufacturers nominal response model. Above 5 Hz, the amplitude response appears to be higher than expected from the nominal response model and the phase response appears to be lower.

Passband

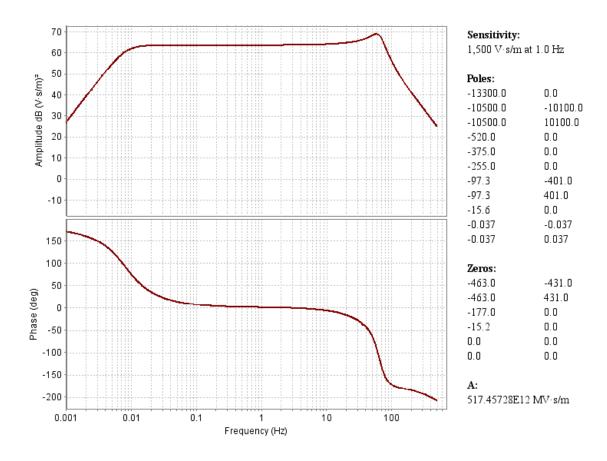
All three seismometers were found to have a low frequency limit consistent with the nominal 0.00833 Hz. Due to the limitation of the data available, the high frequency corner was found to exceed a minimum of 20 Hz

Calibrator Sensitivity

The STS-5A seismometers were found to have calibrator sensitivities at 1 Hz of 82.92 V/(m/s²) and 81.11 V/(m/s²) for #130877 and #130880, respectively.

Calibrator Response Verification

The STS-5A seismometer calibration frequency responses were able to be measured over 0.1 Hz to 10 Hz. The resulting amplitude response were off by about 0.5 dB from the values obtained from the Calibrator Sensitivity test.

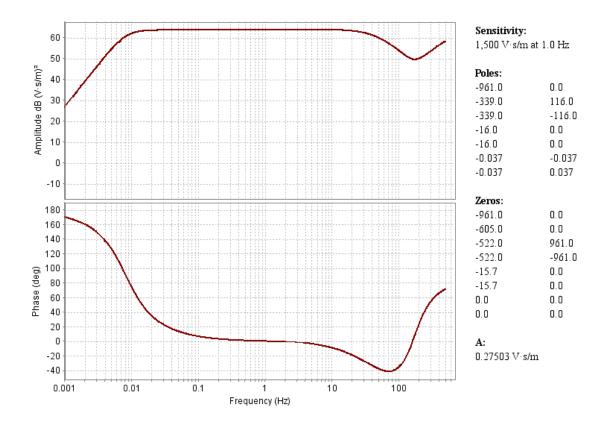

REFERENCES

- 1. Holcomb, Gary L. (1989), A Direct Method for calculating Instrument Noise Levels in Sideby-Side Seismometer Evaluations, DOI USGS Open-File Report 89-214.
- 2. Hutt, C.R., Evans, J.R., Followill, F., Nigbor, R.L., and Wielandt, E., *Guidelines for Standardized Testing of Broadband Seismometers and Accelerometers*, USGS Open-File Report 2009-1295.
- 3. Kinemetrics, STS-5A Borehole Sensor System Datasheet, 04-26-2017.
- 4. IEEE Standard for Digitizing Waveform Recorders, IEEE Std. 1057-1994.
- 5. IEEE Standard for Analog to Digital Converters, IEEE Std. 1241-2010.
- 6. Kromer, Richard P., Hart, Darren M. and J. Mark Harris (2007), *Test Definition for the Evaluation of Digital Waveform Recorders Version 1.0*, SAND2007-5037.
- 7. McDonald, Timothy S. (1994), *Modified Noise Power Ratio Testing of High Resolution digitizers*, SAND94-0221.
- 8. Merchant, B. John, and Darren M. Hart (2011), *Component Evaluation Testing and Analysis Algorithms*, SAND2011-8265.
- 9. Sleeman, R., Wettum, A., Trampert, J. (2006), *Three-Channel Correlation Analysis: A New Technique to Measure Instrumental Noise of Digitizers and Seismic Sensors*, Bulletin of the Seismological Society of America, Vol. 96, No. 1, pp. 258-271, February 2006. Appendix A: Amplitude and Phase Response

APPENDIX A: RESPONSE MODELS

Kinemetrics STS-2 #120651 SNL Reference Response

The SNL reference STS-2 #120651 is a 3rd generation STS with poles and zeros as shown below:



The reference STS-2 was calibrated at the USGS Albuquerque Seismic Laboratory (ASL) in November, 2016 using their step-table, a Lennartz CT-E1 step calibration table. The resulting sensitivities at 1 Hz for the reference STS-2 #120651 are shown below:

Axis	Sensitivity at 1 Hz
Z	1495.51 V/(m/s)
N	1488.72 V/(m/s)
Е	1,492.25 V/(m/s)

Kinemetrics STS-5A Response

The Kinemetrics STS-5A poles and zeros, provided by Kinemetrics, along with the sensitivity of 1500 V/(m/s) are shown below.

APPENDIX B: CALIBRATION SHEETS

Agilent 3458A # MY45048371

PRIMARY STANDARDS LABORATORY

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

Limited Calibration Certificate

Document #: 6652541_11682157

Item Identification

Asset Number 6652541

Description Multimeter, Digital

Model 3458A Serial # MY45048371 Manufacturer Agilent Technologies

Customer Asset Id N/A
Purchase Order N/A

Customer Ground-Based Monitoring R&E

05752

Custodian Slad, George William
Location SNLNM/TA1/758/1044
Date of Receipt September 13, 2016

Dates Tested (Start – End) September 30, 2016 - September 30, 2016

Date Approved October 12, 2016
Calibration Expiration Date October 12, 2017

Calibration Description

Calibration Lab
PSL-ELECTRICAL
Calibration Procedure, rev.
HP 3458A, 4.2
Temperature
23 deg C
Humidity
40 %RH
Barometric Pressure
As Found Condition
PASS

As Left Condition PASS
Software Used MET/CAL 8.3.2.37

Tamper Seal None

Page 1 of 8 6652541_11682157

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

Calibration Specifications and Results

This instrument (Agilent/HP 3458A) was tested using the SNL Primary Standards Laboratory's Multimeter/ Multifunction Station MMS #9300 and is certified to be within the following LIMITED specifications:

DC Volts:

- ± (11 ppm of reading + 10 ppm of range) 100 mV range ± (10 ppm of reading + 1 ppm of range) 1 V range
- \pm (10 ppm of reading + 0.2 ppm of range) 10 V range
- ± (12 ppm of reading + 0.3 ppm of range) 100 V range
- \pm (12 ppm of reading + 0.1 ppm of range) 1000 V range

AC Volts:

- 10 Hz to 40 Hz \pm (0.2% of reading + 0.002% of range) 10 mV to 100 V ranges
- 40 Hz to 20 kHz ± (0.045% of reading + 0.002% of range) 10 mV to 100 V ranges
- 40 Hz to 20 kHz \pm (0.08% of reading + 0.002% of range) 1000 V range 20 kHz to 50 kHz \pm (0.1% of reading + 0.011% of range) 10 mV range
- 20 kHz to 50 kHz \pm (0.1% of reading + 0.002% of range) 100 mV to 100 V ranges
- 50 kHz to $100 \text{ kHz} \pm (0.5\% \text{ of reading} + 0.011\% \text{ of range}) 10 \text{ mV range}$
- 50 kHz to $100 \text{ kHz} \pm (0.2\% \text{ of reading} + 0.002\% \text{ of range}) 100 \text{ mV}$ to 100 V ranges
- 100 kHz to 300 kHz \pm (4% of reading + 0.02% of range) 10 mV range 100 kHz to 300 kHz \pm (1% of reading + 0.01% of range) 100 mV to 10 V ranges
- 100 kHz to 200 kHz \pm (1% of reading + 0.01% of range) 100 V range

NOTE: 700 V RMS maximum on 1000 VAC range

4-wire Ohms:

- \pm (100 ppm of reading + 10 ppm of range) 10 Ω range
- \pm (50 ppm of reading + 5 ppm of range) 100 Ω range
- \pm (50 ppm of reading + 1 ppm of range) 1 K Ω to 100 K Ω ranges
- \pm (100 ppm of reading + 2 ppm of range) 1 MΩ range \pm (200 ppm of reading + 10 ppm of range) 10 MΩ range
- \pm (500 ppm of reading + 10 ppm of range) 100 M Ω range
- \pm (2% of reading + 10 ppm of range) 1 G Ω range

DC Current

- \pm (10% of reading + 0.01% of range) 100 nA range
- \pm (3.0% of reading + 0.01% of range) 1 μ A range
- \pm (0.3% of reading + 0.001% of range) 10 μ A
- \pm (0.04% of reading + 0.01% of range) 100 μ A and 1 A ranges
- \pm (0.02% of reading + 0.005% of range) 1 mA, 10 mA, and 100 mA ranges

Page 2 of 8 6652541_11682157

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

20 Hz to 1 kHz \pm (0.15% of reading + 0.02% of range) 100 μA range 20 Hz to 5 kHz \pm (0.15% of reading + 0.02% of range) 1 mA to 100 mA ranges 40 Hz to 5 kHz \pm (0.15% of reading + 0.02% of range) 1 A range

5 kHz to 10 kHz \pm (0.5% of reading + 0.02% of range) 1 mA to 100 mA ranges

Frequency:

10 Hz to 40 Hz \pm 0.05% of reading 40 Hz to 10 MHz \pm 0.01% of reading

Note 1: Measurement setup configuration is defined in manufacturer's accuracy statement footnotes.

Note 2: Additional errors due to deviations in setup configuration shall be added by the user to the specifications in this certificate.

Note 3: Contact the Primary Standards Laboratory for assistance with uncertainty calculations as needed.

Page 3 of 8 6652541_11682157

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

Calibration Data Report

Primary Electrical Lab

Unit Under Test: Agilent 3458A Digital Multimeter Asset Number: 6652541 Serial Number: MY45048371 Procedure Name: HP 3458A Revision: 4.2 Calibrated By: Brian Liddle

Test Result: PASS Test Type: FOUND-LEFT Calibration Date: 9/30/2016 Temperature: 23 °C Humidity: 40 %

- Test Type is defined as follows:

 AS-FOUND
 Data collected prior to adjustment and/or repair

 AS-LEFT
 Data collected after adjustment and/or repair

 FOUND-LEFT
 Data collected after adjustment and/or repair

 FOUND-LEFT
 Test Uncertainty Ratio (TUR) is defined as:

 TUR = Specification Limit / Uncertainty of the Measurement

 A hash (%) appended to the TUR indicates a guardbanded measurement

 Guardbanded limits are smaller than the specification limits

 Guardbanded initis are smaller than the specification limits

 Guardbanding performed according to the Primary Standards Laboratory Operations Procedure (PSL-PRO-001)

 An asterisk (*) appended to the TUR indicates use of a Test Accuracy Ratio (TAR) instead of a TUR

 *TAR = Specification Limit / Accuracy of the Standard

COMMENTS:

Standards Used		
Asset #	Description	Due Date
11123	Keithley 5155-9 1 Gohm resistor	5/10/2018
20174	Fluke 5725A Amplifier	8/10/2017
66S1332	Agilent 33250A Funtion/Arbitrary Waveform Generato	2/17/2017
6664631	Fluke 5730A Multifunction Calibrator	5/9/2017
6668991	Fluke 5790B AC Measurement Standard	6/29/2017

Test Results								
Total December 1	T 17.3	I T !!6	M	F5	¥144-	mrm	97 TC-1	64.4

MMS: 9300

SOFTWARE USED: Met/Cel Version 8.3.2

CALIBRATION MANUAL:
Agilent Technologies 3458A Multimeter
Calbration Manual, Edition 6, October 2013
PN 03458-90017

PSL specifications are larger than manufacturer's specifications reported in Factory User Manual. This is a limitation of the PSL.

The internal temperature of the 3458A is 36.2 deg.C

DC Volts						
100.00000 mV	99.99820	100.00007	108.00180	milif	1.91#	4
~100.00000 mV	-100.00180	-100.00000	-99.99820	mV	1.91#	0
1.00000000 V	0.99999035	1.00000018	1.00000965	v	2.08#	2
-1.00000000 V	-1.00000965	-1.00000044	-0.99999035	v	2.08#	5
-10.0000000 V	-10.0000964	-10.0000107	-9.9999036	v	3.09#	11
-5.0000000 V	-5.0000488	-5.0000059	-4.9999512	v	2.89#	12
~2.0000000 V	~2.0000196	-2.0000012	~1.9999804	v	2.22#	6
2.0000000 V	1.9999804	2.0000015	2.0000196	v	2.22#	7

Agilent 3458A Asset # 6652541 Calibration Date: 9/30/2016 10:32:19

Primary Electrical Lab TUR Report version 03/30/16

Page 4 of 8 6652541_11682157

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

Test Description	True Value	Lower Limit	Measured Value	Upper Limit	Units	TUR	% Tol	Statu
5.0000000 V		4.9999512	5.0000046	5.0000488	V	2.89#	10	
10.0000000 V		9.9999036	10.0000082	10.0000964	V	3.09∌	8	
100.000000 V		99.998878	100.000131	100.001122	v	2.46#	12	
1000.00000 V C Current		999.98987	1000.00176	1000.01013	V	1.83#	17	
100.000 nA		91.597	99.981	108.403		1.85#	n	
1.000000 µA		0.969900	0.999973	1.030100	nA uA	5.5	0	
10.000000 µA		9.969900	9.999795	10.030100	иA	5.2	1	
100.000000 µA		99,95000	99,99837	100.05000	μA	5.4	3	
1.0000000 pA		0.9997500	0.9999940	1.0002500	пА пА	6.8	2	
10.000000 mA		9,997500	9,999940	10.002500	пA	7.1	2	
100.00000 mA		99.97500	100.00013	100.02500	nA	5.6	1	
1.0000000 A		0.9995000	1.0000079	1.0005000	A	6.2	2	
lesistance		0.5555000	1:0000073	1.0003000		0.5	-	
10.00000 Ohm	10.000281	9,99918	10.00027	10,00138	Ohm	5.2	1	
100.00000 Ohm	100.003660	99.99816	100.00374	100.00136	Ohn	5.9	1	
1.0000000 kOhm	0.99998410	0.9999331	0.9999872	1.0000351	kOhm	8.2	6	
10.000000 kohm	9.9998320	9.999322	9.999884	10.000331	kOhn	8.2	10	
100,00000 kOhm	100.000690	99.99559	100.00133	100,00579	kOhm	6.5	13	
1.0000000 MOhm	D. 99996080	0.9998588	D.9999692	1.0000628	MOhm	8.5	13	
10.000000 MOhm	9.9982260	9.996126	9.998293	10.000326	Mohn	5.8	3	
100.00000 MOhm	100.010650	99.95964	99.99522	100.06166	MOhn	5.5	30	
1.00192000 GOhm	100.010000	0.9818716	1.0005328	1.0219684	60hm	>10	7	
C Current		0.3010/10	1.00000220	1.0217004	COLLIN	>10	,	
100.0000 µA 0 20 Hz		99.8300	99.9431	100.1700	μA	6.8	34	
100.0000 pA 0 45 Hz		99.8300	99.9865	100.1700	na.	10.0	8	
100.0000 µA 0 1 kHz		99.8300	99.9852	100.1700	μA	10.0	9	
1.000000 mA 0 20 Hz		D.998300	0.999530	1.001700	nΑ	8.9	28	
1.000000 mA 0 45 Hz		0.998300	0.999976	1.001700	пA	>10	1	
1.000000 mA 0 5 kHz		0.998300	1.000252	1.001700	nA	5.9	15	
1.000000 mA 0 10 kHz		0.995062	1.000536	1.001700	пA	3.25#	11	
10.00000 mA @ 20 Hz		9.98300	9.99535	10,01700	пА	8.9	27	
10.00000 mA @ 45 Hz		9.98300	9.99981	10.01700	пА	>1.0	1	
10.00000 mA 0 5 kHz		9,98300	10.00160	10.01700	пA	7.1	9	
10.00000 mA 0 10 kHz		9.95013	10.00277	10.04987	nA	3.47#	6	
100.0000 mA 0 20 Hz		99.8300	99.9560	100,1700	пА	8.9	26	
100.0000 mA 0 45 Hz		99.8300	100.0021	100,1700	пA	>1.0	1	
100.0000 mA 0 5 kHz		99.8300	100.0331	100,1700	пA	7.7	20	
100.0000 mA 0 10 kHz		99.4800	100.0596	100.5200	nA	4.7	12	
1.000000 A @ 40 Hz		0.998300	0.999931	1.001700	A	6.5	4	
1.000000 A 0 5 kHz		0.998365	1.001058	1.001635	A	3.62#	65	
C Volta								
10.00000 mV 0 10 Hz	9.997600	9.97740	9.99811	10.01780	nV	7.2	3	
10.00000 mV @ 40 Hz	9.997700	9.99328	9,99840	10.00212	nV	2.94#	16	
10.00000 mV @ 20 kHz	9.998300	9.99388	9.99918	10.00272	nV	2.94#	20	
10.00000 mV 0 50 kHz	9.999000	9.98790	9.99777	10.01010	nV	4.1	11	
10.00000 mV 0 100 kHz	10.001400	9,95029	9,98886	10.05251	nV	>10	25	
10.00000 mV 0 300 kHz	9.998300	9.59637	9.88230	10.40023	nV	>10	29	
100.0000 mV 0 10 Hz	99.99500	99.7930	99.9984	100.1970	nV	>10	2	
100.0000 mV 0 40 Hz	99.99530	99.9483	99.9955	100.0423	nV	>10	1	
100.0000 mV 0 20 kHz	99.99520	99.9482	99.9907	100.0422	nV	>10	10	
100.0000 mV 0 50 kHz	99.99520	99.8932	99.9943	100.0972	nV	>10	1	
100.0000 mV 0 100 kHz	99.99690	99.7949	99.9842	100.1989	nV	>10	6	
100.0000 mV 0 300 kHz	99.99400	98.9841	99.9211	101.0039	nV	>10	7	
1.000000 V @ 10 Hz	1.0000237	0.998004	1.000022	1.002044	V	>10	0	
1.000000 V @ 40 Hz	1.0000196	0.999550	1.000034	1.000490	v	>10	3	
1.000000 V 0 20 kHz	1.0000224	0.999552	0.999957	1.000492	V	>10	14	
1.000000 V 0 50 kHz	1.0000291	0.999009	1.000049	1.001049	v	>10	2	
1.000000 V 0 100 kHz	1.0000269	0.998007	1.000153	1.002047	v	>10	6	
1.000000 V 0 300 kHz	1,0001011	0.990000	1.000103	1.010202	v	>1.0	14	
10.00000 V 0 10 Hz	10.000326	9.98013	10.00062	10.02053	V	>1.0	1	

Agilent 3458A Asset # 6652541 Calibration Date: 9/30/2016 10:32:19 Primary Electrical Lab TUR Report version 03/30/16

Page 2 of 3

Page **5** of **8** 6652541_11682157

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

Test Results								
Test Description	True Value	Lower Limit	Measured Value	Upper Limit	Units	TUR >10	% Tol	Status
10.00000 V 0 20 kHz	10.000190	9.99549	9,99959	10.00489	ν	>10	13	
10,00000 V 0 50 kHz	10.000207	9,99001	10,00030	10.01041	v	>10	1	
10.00000 V G 100 kHz	9,999795	9.97960	9.99935	10.01999	v	210	2	
10,00000 V 8 300 kHz	10.001654	9.90064	9,99865	10.10267	¥	>10	3	
100,0000 V 8 10 Hz	100.00266	99.8007	100,0055	100.2047	v	>10	1	
100,0000 V 8 40 EE2	100,00218	99.9552	100,0044	100,0492	v	>10	5	
100.0000 V @ 20 kHz	100.00295	99.9550	100.0003	100.0500	v	>10	6	
100,0000 V 8 50 kHz	100.00901	99.9070	100,0128	100.1110	¥	>10	4	
100,0000 V 8 100 kHz	100.01336	99.8113	100,0096	100,2154	v	>10	2	
100,0000 V 8 200 kHz	100.06044	99.0498	100,0300	101.0710	v	>10	3	
700.0000 V 0 40 Hz	700.01590	699.4250	700.0061	700.5959	v	>10	2	
700.0000 V 8 20 kHz	700.02470	699.4447	699,7808	700.6047	8	>10	42	
FREQUENCY								
10.00000 Hz 8 1 V		9.995000	10.000099	10.005000	Hz	>10	2	
10.00000 Hz 0 1 V		39.996000	40.000415	40.004000	Hz	>10	10	
100.00000 Hz 0 1 V		99.990000	100,000600	100.010000	Hz	>10	6	
1000.0000 Hz 0 1 V		999.90000	1000.00696	1000.10000	Hz	>10	7	
0000.0000 Hz 0 1 V		9999.00000	10000.06962	10001.00000	Hε	>10	7	
20000.0000 Hz 0 1 V		19998.00000	20000,13923	20002,00000	Hz	>10	7	
0000,0000 Hz 0 1 V		49995.00000	50000,35285	50005,00000	Hz	>10	7	
100.00000 kHz 0 1 V		99.990000	100.000696	100.010000	kHz	>10	7	
500.00000 km2 0 1 V		499,950000	500,003401	500.050000	KHE	>10	7	
.000000 MHz 0 1 V		0.9999000	1,0000071	1.0001000	MHs	>10	7	
.000000 MHz 0 1 V		1,9998000	2,0000139	2,0002000	MHz	>10	7	
1.000000 MHz 0 1 V		3.9996000	4.0000279	4.0004000	MHz	>10	7	
5.000000 MHz 0 1 V		5.9994000	6.0000422	6.0006000	BHB	>10	7	
8.000000 MHz 0 1 V		7.9992000	8,0000566	9.0008000	MHz	>10	7	
10,000000 MHz 0 1 V		9,9990000	10,0000696	10,0010000	MHz	>10	7	

***** End of Test Results *****

Agilent 3458A Asset # 6652541 Calibration Date: 9/30/2016 10:32:19 Primary Electrical Lab TUR Report version 03/30/16

Page 3 of 3

Page 6 of 8 6652541_11682157

PRIMARY STANDARDS LABORATORY Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

LimitationsPSL specifications are larger than manufacturer's specifications reported in Factory User Manual. This is a limitation of the PSL.

Equipment (Standard) Used

Asset #	<u>Description</u>	<u>Model</u>	<u>Expires</u>
6668991	Standard, Measurement	5790B	June 29, 2017
6664631	Calibrator, Multifunction	5730A	April 25, 2017
6651332	Generator, Function	33250A	February 18, 2017
20174	Amplifier	5725A	August 10, 2017
11123	Resistor,Standard	5155-9	May 10, 2018

Page 7 of 8 6652541_11682157

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

Traceability

Values and the associated uncertainties supplied by the Primary Standards Lab (PSL) are traceable to the SI through one or more of the following:

- 1. Reference standards whose values are disseminated by the National Institute of Standards and Technology (United States of America) or, where appropriate, to the national metrological institute of another nation participating in the CIPM MRA;
- 2. Reference standards whose values are disseminated by a laboratory that has demonstrated competence, measurement capability, and traceability for those values;

 - y, and taceabuty for those varies,

 3. The accepted value(s) of fundamental physical phenomena (intrinsic standards);

 4. Ratio(s) or other non-maintained standards established by either a self-calibration and/or a direct calibration technique;
- 5. Standards maintained and disseminated by the PSL in special cases and where warranted, such as consensus standards where no national or international standards exist:
- Note 1: This certificate or report shall not be reproduced except in full, without the advance written approval of the Primary Standards Lab at Sandia National Laboratories.
- Note 2: For National Voluntary Laboratory Accreditation Program (NVLAP) accredited capabilities, the PSL at Sandia National Laboratories is accredited by NVLAP for the specific scope of accreditation under Laboratory Code 105002-0. This certificate or report shall not be used by the customer to claim product endorsement by NVLAP, the Primary Standards Laboratory, Sandia National Laboratories or any agency of the U. S. Government.
- Note 3: The as received condition of the standard, set of standards, or measurement equipment described herein was as expected, unless otherwise noted in the body of the certificate or report.
- Note 4: The presence of names and titles under "Authorization" are properly authenticated electronic signatures conforming to the equivalent identification signatory requirements of ISO 17025:2005 5.10.2.j.

Authorization

Calibrated By:

Approved By:

Liddle, Brian David Metrologist

Aragon, Steven J. Metrologist

End-of-Document

Page 8 of 8 6652541_11682157

Kinemetrics STS-5A #130877

Certificate of Calibration

STRECKEISEN SEISMIC INSTRUMENTATION

Type: STS-5a Serial No: 130877 Date: June 30, 2015

Basic Properties:

- Axes Purity (orthogonality; x, y horizontal, z vertical): Maximum deviation ±0.6°
- Generator Constants for x, y, and z: 1500 V*sec/m ±15 V*sec/m
- ☑ Transfer Function of each sensor component (see below)

Noise Performance:

- ☑ Instrumental Long-Period Noise (1 mHz 30 mHz)
- ☑ Electronic Self-Noise (1 Hz 50 Hz) per sensor component

Miscellaneous:

Air Tightness

☑ Digital Control Functions including Automatic Centering & Leveling

Parameters Routinely Tested and Evaluated:

Notation conventions: 1. Individual parameter values are noted in italic letters. 2. "N.E." = "Not Evaluated"

Oscillator Frequency: 22.00 kHz Initial Humidity: <3

Electrical calibration transducer constant (CAL input to Z output, CS0 = CS1 = 0V or open):

[(fraction of g)/V]: N.E. ±1 %, @ Period [s]: ----

Transfer Function Parameters:

1. Low-Frequency Corner Period and Damping Constant

Param.	U	1)	V ¹⁾		W	1)	Lower Limit ²⁾	Upper Limit ²⁾
T[s], 1σ[%]	119.9	0.023	119.9	0.021	119.5	0.021	118.8	121.2
h, 1σ[%]	0.708	0.030	0.709	0.027	0.706	0.027		0.714

¹⁾ Optimized for best fit between 5.86 mHz and 105.5 mHz, 2) According to specifications (±1 %)

2. Preliminary upper frequency range poles and zeroes. Sensitivity coordinates of components.

Please notice! The poles & zeroes have been evaluated using the mechanical core of this instrument together with an STS-2.5 case assembly instead of an STS-5a case assembly. Corresponding amplitudes and phases deviate <2 % and <2 °, respectively, between 1 Hz and 70 Hz. These deviations are accounted for by adding case-related amplitude and phase corrections to the measured transfer functions.

		Y -	_	_	_										
Compo	C'mon		[Hz], Note 4									Sphe	Spher. Sens. Coord. 5)		
nent	Fact ³⁾	z1	z2	zre3	zim3	z4=p4	p1	pre2	pim2	pre3	pim3	Gc/Gc ₀	σ[ο]	θ [°]	
U			60		6	59.9	3.5917	81.18	0.00	16.22	103.35	0.8888	269.68	56.77	
V	2*π*	3.5	96.	83.0	52	59.5	3.5986	80.41	0.00			0.9089		56.25	
W			3.		-	61.4	3.5953	81.20				0.8828		56.21	

^{3) &}quot;Common factor". All t.f. parameter values to be multiplied with, when entering into the formula below.

Complete transfer function formula 0.001 ... 70 Hz:

Related to ground velocity, normalized to 1500 V*s/m

$$TF_{cost}(s) = -\frac{p_1^2 \cdot (p_{re2}^2 + p_{im2}^2)^3(p_{re3}^2 + p_{im3}^2)}{z_1^2} \cdot \frac{(s + p_1)^2(s + p_{re2} + i \cdot p_{im2})^3(s + p_{re2} - i \cdot p_{im3})(s + p_{re3} - i \cdot p_{im3})(s + p_{re3} - i \cdot p_{im3})(s - p_4)}{(s + p_1)^2(s + p_{re2} + i \cdot p_{im2})^3(s + p_{re2} - i \cdot p_{im3})^3(s + p_{re3} + i \cdot p_{im3})(s + p_{re3} - i \cdot p_{im3})(s - p_4)}$$

$$TF_{corr}(s) = \frac{(s + z_2)(s + z_{re3} + i \cdot z_{im3})(s + z_{re3} - i \cdot z_{im3})}{s^2} \cdot \frac{s^2}{(s + z_1)^2(s + z_{re3} - i \cdot z_{im3})(s - p_4)}{s^2}$$

$$TF_{corr}(s) = \frac{(s + z_2)(s + z_{re3} + i \cdot z_{im3})(s + z_{re3} - i \cdot z_{im3})}{z_2 \cdot (z_{re3}^2 + z_{im3}^2)}$$

$$TF_{LF}(s) = \frac{s^2}{(s^2 + 2 \cdot h \cdot \frac{2\pi}{T} \cdot s + \left(\frac{2\pi}{T}\right)^2)}$$

 $TF_{TOT}(s) = G \cdot TF_{LF}(s) \cdot TF_{cal}(s) \cdot TF_{corr}(s)$

STRECKEISEN SEISMIC INSTRUMENTATION Streckeisen GmbH Daettlikonerstr. 5 CH-8422 Pfungen

Test engineer

Nicolas Rüst

file: Cal035019 | Streckeisen GmbH | Daettlikonerstr. 5 | CH-8422 Pfungen | SWITZERLAND | phone +41(0)52 315 67 00 | e-mail: info@streckeisen.biz

Page 1/1

⁴⁾ The vertically written parameters are pre-established values, those parameters written in italics are optimized for best fit between 0.75 Hz and 70 Hz. For details please consult the STS-5a manual.

⁵⁾ Spherical sensitivity coordinates deduced from absolute calibration. Gc = component generator constant, Gc_0 = 1500 V*s/m. ϕ = azimuth relative to orientation mark. θ = dip (Z direction = 0° with respect to plumb).

Kinemetrics STS-5A #130880

Certificate of Calibration

STRECKEISEN SEISMIC INSTRUMENTATION

Type: STS-5a Serial No: 130880 Date: June 30, 2015

Basic Properties:

- Axes Purity (orthogonality; x, y horizontal, z vertical): Maximum deviation ±0.6°
- ☑ Generator Constants for x, y, and z: 1500 V*sec/m ±15 V*sec/m
- ☑ Transfer Function of each sensor component (see below)

Noise Performance:

- ☑ Instrumental Long-Period Noise (1 mHz 30 mHz)
- ☑ Electronic Self-Noise (1 Hz 50 Hz) per sensor component

Miscellaneous:

Air Tightness

☑ Digital Control Functions including Automatic Centering & Leveling

Parameters Routinely Tested and Evaluated:

Notation conventions: 1. Individual parameter values are noted in italic letters. 2. "N.E." = "Not Evaluated"

Oscillator Frequency: 22.00 kHz Initial Humidity:

Electrical calibration transducer constant (CAL input to Z output, CS0 = CS1 = 0V or open):

[(fraction of g)/V]: N.E. ±1 %, @ Period [s]: ----

Transfer Function Parameters:

1. Low-Frequency Corner Period and Damping Constant

Param.	U ¹⁾		V ¹⁾		W	1)	Lower Limit ²⁾	Upper Limit ²⁾
T[s], 1σ[%]	119.8	0.020	119.2	0.025	119.8	0.018	118.8	121.2
h, 1σ[%]	0.706	0.026	0.706	0.032	0.706	0.024	0.7	0.714

¹⁾ Optimized for best fit between 5.86 mHz and 105.5 mHz, 2) According to specifications (±1 %)

2. Preliminary upper frequency range poles and zeroes. Sensitivity coordinates of components.

Please notice! The poles & zeroes have been evaluated using the mechanical core of this instrument together with an STS-2.5 case assembly instead of an STS-5a case assembly. Corresponding amplitudes and phases deviate <2 % and <2 °, respectively, between 1 Hz and 70 Hz. These deviations are accounted for by adding case-related amplitude and phase corrections to the measured transfer functions.

Compo	C'mon						Spher. Sens. Coord. 5)							
HOTH	Fact ³⁾	z1	z2	zre3	zim3	z4=p4	p1	pre2	pim2	pre3	pim3	Gc/Gc ₀	φ[°]	θ [°]
U			m	0	6	59.8	3.6008	80.39	0.00	18.16	102.66	0.8943	269.74	57.18
	2*π*	3.5	96.	83.0	52	61.1	3.5959	80.00	8.54	13.02	103.43	0.8657	149.62	56.52
W					-	61.5	3.5986	80.84	2.30	14.02	103.78	0.8762	29.81	56.74

^{3) &}quot;Common factor". All t.f. parameter values to be multiplied with, when entering into the formula below.

Complete transfer function formula 0.001 ... 70 Hz:

Related to ground velocity, normalized to 1500 V*s/m

$$TF_{corr}(s) = -\frac{p_1^2 \cdot (p_{re2}^2 + p_{om2}^2)^3 (p_{re3}^2 + p_{lm3}^2)}{z_1^2} \cdot \frac{(s + p_1)^2 (s + p_{re2} + i \cdot p_{lm2})^3 (s + p_{re2} - i \cdot p_{lm2})^3 (s + p_{re3} + i \cdot p_{lm3}) (s + p_{re3} - i \cdot p_{lm3}) (s - p_4)}{TF_{corr}(s) = \frac{(s + z_2)(s + z_{re3} + i \cdot z_{lm3})(s + z_{re3} - i \cdot z_{lm3})}{z_2 \cdot (z_{re3}^2 + z_{lm3}^2)}$$

$$TF_{LF}(s) = \frac{s^2}{(s^2 + z + b_1)^2 \pi \cdot s \cdot (2\pi)^2}$$

$$TF_{LF}(s) = \frac{s^2}{(s^2 + z + b_1)^2 \pi \cdot s \cdot (2\pi)^2}$$

 $TF_{TOT}(s) = G \cdot TF_{LF}(s) \cdot TF_{cal}(s) \cdot TF_{corr}(s)$

 $(s^2 + 2 \cdot h \cdot \frac{2\pi}{T} \cdot s + (\frac{2\pi}{T})^2$

STRECKEISEN SEISMIC INSTRUMENTATION Streckeisen GmbH Daettlikonerstr. 5 CH-8422 Pfungen

Test engineer

file: Cal025095 | Streckeisen GmbH | Daettlikonerstr. 5 | CH-8422 Pfungen | SWITZERLAND | phone +41(0)52 315 67 00 e-mail: info@streckeisen.biz

Page 1/1

⁴⁾ The vertically written parameters are pre-established values, those parameters written in italics are optimized for best fit between 0.75 Hz and 70 Hz. For details please consult the STS-5a manual.

Spherical sensitivity coordinates deduced from absolute calibration. Gc = component generator constant, $Gc_0 = 1500 \text{ V*s/m. } \phi = \text{azimuth relative to orientation mark. } \theta = \text{dip (Z direction} = 0^{\circ} \text{ with respect to plumb)}.$

Distribution

1 MS0899 Technical Library 9536 (electronic copy)

